

COURSE CURRICULUM

B.Tech Chemical Engineering

Batch:2023-2024 Academic Year: 2023-24 Updated on: July, 2023

GSFC University School of Technology, Vigyan Bhavan, P. O. Fertilizernagar, Vadodara - 391750, Gujarat, India

B.Tech in Chemical Engineering Course Curriculum

Batch: 2023-2024 Academic Year: 2023-24 W.E.F. July 2023

GSFC University, Vigyan Bhavan, P. O. Fertilizernagar, Vadodara - 391750, Gujarat, India

• GSFCU strives to be the best compact boutique institution with a futuristic approach, encouraging student centric culture and sharpened focus on developing industry ready & employable students with all-round development.

MISSION

- Establish an institution, which promotes creativity and innovation.
- Develop unique quality standards for academic excellence and pedagogical innovations.
- Remain agile through learning ecosystem with flexible processes & systems.
- Holistic growth for industry readiness.

Chemical Engineering

No.	Programme Outcomes (POs)	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain		
PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	Cognitive domain	Apply		
PO2	Problem analysis: Identify, formulate, research literature, and analyze complex engineering	Cognitive domain	Analyse		
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	Cognitive domain	Create		
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	Cognitive domain	Analyse		
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.	Cognitive domain	Evaluate		

ता केई

🕴 Che	mical Engineering Course Curriculum	Acader	nic Year 2023-
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	Cognitive domain	Apply
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	Cognitive domain	Understand
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	Cognitive domain	Apply
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	Cognitive domain	Create
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	Cognitive domain	Remember
PO11	Project management and finance: Demonstrate knowledge understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	Cognitive domain	Apply
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	Cognitive domain	Understand

No.	Programme Specific Outcomes (PSOs)	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
PSO1	Apply the principles and practices of Chemical Engineering discipline along with the mathematics and basic sciences to solve the complex engineering problems concerning the issues of environment, safety and economics.	Cognitive domain	Apply

Chemical Engineering Course Curriculum Academic Year 2023-24

PSO2	To prepare students for a professional World in development, design, modelling, simulation, optimization and operation of chemical processes.	Cognitive domain	Create		
PSO3	Graduates of chemical engineering will be able to communicate in a professional setting, including soft skills, technical writing, presentation, and management skills making them industry ready.	Cognitive domain	Analyse		

Mapping of POs & PSOs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PSO1	3	3	3	2	3	1	2	2	1	1	2	1
PSO2	2	2	3	3	1	2	1	1	2	2	3	2
PSO3	2	1	2	1	3	1	0	3	2	3	3	1
Avg.	2.33	2.00	2.67	2.00	2.33	1.33	1.00	2.00	1.67	2.00	2.67	1.33

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Definition of Credit:

1 Hour. Lecture (L) per week	1 credit
1 Hour Tutorial (T) per week	1 credit
2 Hours Practical (P) per week	1 credit
1 Hour Practical (P) per week	0.5 credit
3 Hours Experiential learning	1 credit

Course code Definitions:

Lecture	L
Tutorial	Т
Practical	Р
Basic Science Courses	BSC
Engineering Science Courses	ESC
Humanities and Social Sciences including	HSMC
Management courses	
Professional core courses /Major (Core)	PCC
Professional Elective courses /Minor Stream	PEC

- Ale	
THE WAY	
¹ अविकालेल अध्यति ^२	(

r	Chemical Engineering (Course	Curriculum	Academic Year 2023-24
affer '	Open Elective courses		OEC	
	Laboratory course		LC	
	Mandatory courses		MC	
	Non-credit courses		NC	
	Project (Experiential learning)		PROJ	
	Experiential learning ex. Internship, Inde Visit, Field visit, etc,	ustrial	EL	
	Multidisciplinary courses		MDC	
	Ability Enhancement Course		AEC	
	Skill Enhancement Course		SCE	
	Value Added Courses		VAC	

Structure of Undergraduate Programme:

Sr. No.	Category	Credit Breakup
1	Humanities and Social Sciences courses	12
2	Basic Science courses	28
3	Engineering Science courses	27
4	Professional Core courses	74
5	Professional Elective courses	6
6	Open Elective courses	5
7	Project work, seminar and internship	26
	Total	178

Category-wise Courses:

Humanities & Social Sciences Courses

(i) Number of Humanities & Social Science Courses: 6

(ii) Credits: 12

Sr.	Course Code	Course Name	Semester	Т	eaching (Hours)	g Schem s/week)	ie	Teaching Credit				
No.				L	Р	Т	Tota l	L	Р	Т	Tota 1	
1	AECC101	Fundamentals of English	Ι	2	0	0	2	2	0	0	2	
2	AECC201	Communication Skills in English	П	2	0	0	2	2	0	0	2	

2	📕 Chemical Engineering			Course Curriculum					Academic Year 2023-2					
1	3	AECC301	Entrepreneurship Development	III	2	0	0	2	2	0	0	2		
	4	AECC401	Environmental Studies	IV	2	0	0	2	2	0	0	2		
	5	AECC501	Disaster Risk Management	V	2	0	0	2	2	0	0	2		
Ī	6	AECC601	Indian Constitution	VI	2	0	0	2	2	0	0	2		
			Total					12				12		

Note: L = Lecture, P = Practice, T= Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, ES - End Semester

Basic Science Course

(i) Number of Basic Science Course: 7

(ii) Credits: 28

Sr. No	Course Code	Course Name	Semester	ſ	Ceaching (Hours	g Schem s/week)	ie		Feachin	g Credi	t
•				L	Р	Т	Tota l	L	Р	Т	Tota l
1	BTMA103	Mathematics – I	Ι	3	0	1	4	3	0	1	4
2	BTPY105	Engineering Physics	Ι	3	2	0	5	3	1	0	4
3	BTMA203	Mathematics – II	II	3	0	1	4	3	0	1	4
4	BTCY205	Engineering Chemistry	II	3	2	0	5	3	1	0	4
5	BTMA301	Mathematics III	III	3	0	1	4	3	0	1	4
6	BTCH303	Applied Chemistry	III	4	2	0	6	4	1	0	5
7	BTCH404	Numerical Methods in Engineering	IV	2	2	0	4	2	1	0	3
		Total					32				28

Note: L = Lecture, P = Practice, T= Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, ES - End Semester

Engineering Science Course

(i) Number of Engineering Science Course: 10

(ii) Credits: 27

Sr. No	Course	Course Name	Semester	ſ	Feaching (Hours	g Schem s/week)	ie	r	Feachin	g Credi	t
•	Code		I	L	Р	Т	Tota l	L	Р	Т	Tota l
1	BTEC101	Basic of Electrical & Electronics	Ι	3	2	0	5	3	1	0	4
2	BTCS104	Computer Programming - I	Ι	3	2	0	5	3	1	0	4

					_						
Where we want	Chemica	l Engineering (Course Cu	rricu	lum		Aca	dem	ic Ye	ar 20	023-2
3 Total A	BTME106	Workshop	Ι	0	2	0	2	0	1	0	1
4	BTFS108	Fundamental in Fire, Environment, health, Safety	Ι	2	0	0	2	2	0	0	2
5	BTME202	Engineering Graphics	II	2	4	0	6	2	2	0	4
6	BTME209	Engineering Mechanics	II	3	2	0	5	3	1	0	4
7	BTCS206	Computer Programming-II	II	0	2	0	2	0	1	0	1
8	BTME207	Auto CAD	II	0	2	0	2	0	1	0	1
9	BTCH405	Material Science and Engineering	IV	3	0	0	3	3	0	0	3
10	BTCH702	Plant Design and Economics	VII	3	0	0	3	3	0	0	3
		Total		19	16	0	35	19	8	0	27

Note: L = Lecture, P = Practice, T= Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, ES - End Semester

Professional Core Courses

(i) Number of Professional Core Courses: 18

(ii) Credits: 74

Sr.	Course	Course Name	Semester	1	Ceaching (Hours	g Schem s/week)	e	ŗ	Feachin	g Credi	t
No.	Code			L	Р	Т	Tota l	L	Р	Т	Tota l
1	BTCH304	Process Calculations	III	3	0	1	4	3	0	1	4
2	BTCH305	Mechanical Operations	III	4	2	0	6	4	1	0	5
3	BTCH309	Fluid Flow Operations	III	3	2	0	5	3	1	0	4
4	BTCH401	Chemical Engineering Thermodynamics - I	IV	3	0	1	4	3	0	1	4
5	BTCH402	Heat Transfer Operations	IV	3	2	1	6	3	1	1	5
6	BTCH403	Process Technology	IV	4	2	0	6	4	1	0	5
7	BTCH408	Industrial Pollution Control	IV	2	0	0	2	2	0	0	2
8	BTCH501	Mass Transfer Operations - I	V	4	2	0	6	4	1	0	5
9	BTCH502	Chemical Reaction Engineering - I	V	3	2	1	6	3	1	1	5
10	BTCH503	Chemical Engineering Thermodynamics - II	V	3	0	1	4	3	0	1	4

		homical	Engineering	Course	urria			۸ م	adar	mic V	loor i	ากาว	24
	Ľ	nenncai	Engineering	Course C	unic	ululi		AL	auer		ear 4	2025	-24
Ser.	11	BTCH504	Instrumentation & Process Control	V	4	2	0	6	4	1	0	5	
	12	BTCH601	Mass Transfer Operations - II	VI	3	2	1	6	3	1	1	5	
	13	BTCH602	Chemical Reaction Engineering - II	VI	3	0	0	3	3	0	0	3	
	14	BTCH603	Process Equipment Design - I	VI	3	2	0	5	3	1	0	4	
	15	BTCH701	Process Modelling, Simulation and Optimization	VII	4	2	0	6	4	1	0	5	
	16	BTCH704	Chemical Process Safety	VII	3	0	0	3	3	0	0	3	
	17	BTCH708	Process Equipment Design - II	VII	2	0	1	3	2	0	1	3	

Note: L = Lecture, P = Practice, T= Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, ES - End Semester

VII

Professional Elective Courses

(i) Number of Professional Elective Course: 2

Transport Phenomena

Total

(ii) Credits: 6

BTCH709

Sr. No	Course Code	Course Name	Semes	I	eaching) (Hours)	g Schem s/week)	e	ŗ	Feachin	g Credi	t
•			ter	L	Р	Т	Tota l	L	Р	Т	Tota 1
1	BTCH605A	Petroleum Engineering	VI	3	0	0	3	3	0	0	3
	BTCH605B	Polymer Science & Technology									
	BTCH605E	Green Technology									
	BTCH605F	Industrial Engineering Practices									
	BTCH605G	Advanced Separation Techniques									
2	BTCH706A	Petroleum Refining Processes	VII	3	0	0	3	3	0	0	3
	BTCH706B	Polymer Processing									
	BTCH706C	Bioprocess Engineering									
	BTCH706E	Process Intensification									
	BTCH706F	Industrial Management Practices									

Note: L = Lecture, P = Practice, T = Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, ES - End Semester

Open Elective Courses:

(i) Number of Open Elective Courses: 2

(ii) Credits: 5

Sr.	Course	Course Name	Semester]	Feaching (Hours	g Schem s/week)	ie	7	Feachin	g Credi	t
No.	Code			L	Р	Т	Tota l	L	Р	Т	Tota l
1	NOC01	NPTEL Online Courses	V	0	0	0	0	0	0	0	2
2	BTOE1	Plant Utilities	VI	3	0	0	3	3	0	0	3
	BTOE2	Corrosion Science									
	BTOE8	Energy Technology									
		Total		3	0	0	3	3	0	0	5

Note: L = Lecture, P = Practice, T= Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, ES - End Semester

Project Work, Seminar and Internship In Industry Or Elsewhere

(i) Number of Project Work, Seminar and Internship in Industry Or Elsewhere: 9 (ii) Credits: 26

Sr.	Course	Course Name	Semester	Т	eaching (Hours)	g Schem s/week)	e		Teachi	ng Cred	it
No.	Code			L	Р	Т	Tota 1	L	Р	Т	Total
1	SECC101	Foundation Course	Ι	0	0	0	0	0	0	0	2
2	BTCH109	Industrial Internship	Ι	0	0	0	0	0	0	0	2
3	BTCH208	Industrial Internship	II	0	0	0	0	0	0	0	2
4	BTCH307	Industrial Internship	III	0	0	0	0	0	0	0	2
5	BTCH407	Industrial Internship	IV	0	0	0	0	0	0	0	2
6	BTCH506	Industrial Internship	V	0	0	0	0	0	0	0	2
7	BTCH606	Industrial Internship	VI	0	0	0	0	0	0	0	2
8	BTCH707	Industrial Internship	VII	0	0	0	0	0	0	0	2
9	BTCH801	Project	VIII	0	20	0	2	0	10	0	10
		Total									26

Note: L = Lecture, P = Practice, T= Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, ES - End Semester

Ability Enhancement Courses

Chemical Engineering Course

🐜 🐢 (i) Number of Ability Enhancement Courses: 6

(ii) Credits: 12

Sr.	Course	Course Name	Semester	T	Ceaching (Hours	g Schem s/week)	e	ŗ	Feachin	g Credi	t
No.	Code			L	Р	Т	Tota l	L	Р	Т	Tota l
1	AECC101	Fundamentals of English	Ι	2	0	0	2	2	0	0	2
2	AECC201	Communication Skills in English	Π	2	0	0	2	2	0	0	2
3	AECC301	Entrepreneurship Development	III	2	0	0	2	2	0	0	2
4	AECC401	Environmental Studies	IV	2	0	0	2	2	0	0	2
5	AECC501	Disaster Risk Management	V	2	0	0	2	2	0	0	2
6	AECC601	Indian Constitution	VI	2	0	0	2	2	0	0	2
		Total									12

Note: L = Lecture, P = Practice, T = Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, ES - End Semester

Skill Enhancement Courses

(i) Number of Skill Enhancement Courses: 1

(ii) Credits: 2

Sr.	Course	Course Name	Semester	T	eaching (Hours)	g Schem s/week)	e	r	Feachin	g Credi	t
No.	Code			L	Р	Т	Tota l	L	Р	Т	Tota l
1	SECC101	Foundation Course	Ι	0	0	0	0	0	0	0	2
		Total									2

Note: L = Lecture, P = Practice, T= Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, ES - End Semester

Research Project / Dissertation

(i) Number of Research Project / Dissertation: 1

(ii) Credits: 10

Sr.	Course	Course Name	Semester	T	eaching (Hours)	g Schem s/week)	e	r	Feachin	g Credi	t
No.	Code			L	Р	Т	Tota l	L	Р	Т	Tota l
1	BTCH801	Project	VIII	0	20	0	2	0	10	0	10
		Total									10

About the Program

Chemical Engineering

Chemical Engineering covers a vast area from producing innovative products in laboratories to implementing them in large scale production in industries by combining the basic principles of chemistry, mathematics, physics, life sciences and economics. The Chemical Engineering Program at GSFC University focuses to develop Industry ready students for the futuristic areas in modelling and simulation, process control, reaction engineering, transfer operations, thermodynamics, renewable energy and so on. The Program is well equipped with new state of art labs to boost up high quality research & learning activity with the help of several software such as CHEMCAD and MATLAB. Chemical engineering now extends beyond its traditional roots in oil and gas processing to interdisciplinary emerging technologies like recycling and waste management, green technology, nuclear and biomedical engineering. Apart from this the Gujarat Industrial Policy - 2020 has indicated an increase in demand of Chemical Engineers in near future as major investment is being made in the sector of Petroleum, Chemicals and Petrochemicals in 453 sq. km. at Dahej, Gujarat. The GSFC University in Vadodara, Gujarat is situated at the heart of the chemical belt comprising of major chemical industries like GSFC Limited, IOCL, GACL, Reliance - IPCL, Prakash Chemicals, Deepak Nitrite in the nearby vicinity along-with various chemical industries like ONGC, Reliance Jamnagar Refinery, Atul Chemicals, etc.in other parts of Gujarat.

The great philosopher Aristotle once said, "for the things we have to learn before we can do them, we learn by doing them". Learning by doing or experiential learning is the core belief that we proudly follow at GSFC University! Think about the time when from school we used to go on field trips to a manufacturing industry or a museum, seeing the pages of our books alive in front of us always had a lasting impression. Even after leaving school and joining the Chemical Engineering Program at GSFC University we pledged to go by the same lasting impression through our industrial internships. Internships are undertaken for overall development of student focussing the curriculum application and allied sectors after every semester throughout the course followed by the final six months of industrial project in the last semester. The campus situated within the vicinity of the esteemed organization of GSFC Limited with access to 22 process plants along with internship opportunities in RIL, GACL, L&T, GFL, IOCL, Deepak Nitrate, GNFC etc gives immediate exposure to the students to the real time aspects of Chemical Engineering. To accomplish a holistic development, the hands-on experience is well supported by the chemical engineering program's cutting-edge curriculum meeting industry demands and fully equipped laboratory facilities for indulging students in the basic knowledge for becoming industry ready. In keeping with the unprecedented time, classroom teaching has also evolved from the traditional ICT tools to Google Classroom and innovative pedagogies like breakout rooms for

Chemical Engineering

Course Curriculum

Academic Year 2023-24

team building activities, flipped classrooms for making lessons more engaging. Chemical Engineering Program in GSFC University offers a host of courses apart from the core chemical engineering subjects like Petroleum refining Engineering, Plant Utilities, Polymer Science & Technology, Energy Technology, Industrial Management, Bioprocess Engineering. For soft skill development of students to meet professional goals in terms of presentation and interview a course in Soft Skills and Technical writing is also offered. Keeping abreast with the latest developments in chemical fields, several courses are offered matching the emerging technologies like Industrial Pollution Control, Chemical Process Safety, Advanced Separation Techniques, Corrosion science, Process Technology and Environmental Science.

Along with the course curriculum, the students of chemical engineering also participate in various cocurricular and extra-curricular activities through different student managed clubs and AIChE GSFCU student chapter. AIChE student chapters are a great way for chemical engineering students to connect both locally and globally with other students and experts in the field of chemical engineering for networking, scholarships, career placement, education opportunities etc. AIChE GSFC University Student Chapter won consecutive two times the global recognition of the Outstanding Student Chapter Award in the year 2021 and 2022 respectively!

Students also have exposure to the incubation and innovation center at GSFC University named GSFC University Incubation, Innovation, Technology & Applied Research Centre (GUIITAR); which helps them orient, develop, tinker and create their own business platforms as a career path option.

Semester-I

Sr.				Teachi (Hou	ing Sche 1rs/weel	eme x)		Feachin	ig Credi	it			Evaluation	Scheme		
No ·	Course Code	Course Name	L	Р	Т	Total	L	Р	Т	Total	Theory: MS Marks	Theory: CEC Marks	Theory: ES Marks	Theo ry Mark s	Practical Marks	Total Marks
1	BTEC101	Basics of Electrical & Electronics	3	2	0	5	3	2	0	4	20	40	40	100	50	150
2	BTMA103	Mathematics – I	3	0	1	4	3	0	1	4	20	40	40	100	0	100
3	BTCS104	Computer Programming	3	2	0	5	3	2	0	4	20	40	40	100	50	150
4	BTPY105	Engineering Physics	3	2	0	5	3	2	0	4	20	40	40	100	50	150
5	BTME106	Workshop	0	2	0	2	0	2	0	1	0	0	0	0	50	50
6	BTFS108	Fundamentals in Fire & Environment, Health, Safety	2	0	0	2	2	0	0	2	0	0	0	0	0	P/F
7	AECC101	Fundamentals of English	2	0	0	2	2	0	0	2	20	40	40	100	0	100
8	SECC101	Foundation Course	0	0	0	0	0	0	0	4	0	0	0	0	100	100
		Total	16	8	1	25	14	8	1	25						900

Semester – II

Sr.	Sr.		Teachi	ing Schem	e (Hours/	week)	Т	eachiı	ng Cred	it			Evaluatio	n Scheme		
No ·	Course Code	Course Name	L	Р	Т	Tot al	L	Р	Т	Total	Theory: MS Marks	Theory: CEC Marks	Theory: ES Marks	Theory Marks	Practical Marks	Total Marks
2	BTME202	Engineering Graphics	2	4	0	6	2	2	0	4	20	40	40	100	50	150
3	BTMA203	Mathematics - II	3	0	1	4	3	0	1	4	20	40	40	100	-	100
4	BTME209	Engineering Mechanics	3	2	0	5	3	1	0	4	20	40	40	100	50	150
5	BTCY205	Engineering Chemistry	3	2	0	5	3	1	0	4	20	40	40	100	50	150
6	BTCS206	Computer Programming-II	0	2	0	2	0	1	0	1	-	-	-	-	50	50
7	BTME207	AutoCAD	0	2	0	2	0	1	0	1	-	-	-	-	50	50
8	AECC201	Communication Skills in English	2	0	0	2	2	0	0	2	20	40	40	100	-	100
9	BTCH208	Industrial Internship	0	0	0	0	0	0	0	2	-	-	-	-	-	100
		Total	13	12	1	26	13	6	1	22	100	200	200	500	250	850

Semester – III

Sr.	r. No Course Code Course Name		,	Teaching (Hours	g Scheme s/week)	2		Teachin	g Credit	;			Evaluatio	on Scheme		
No ·	Course Code	Course Name	L	Р	Т	Total	L	Р	Т	Total	Theory: MS Marks	Theory: CEC Marks	Theory: ES Marks	Theory Marks	Practical Marks	Total Marks
1.	BTMA301	Mathematics-III	3	0	1	4	3	0	1	4	20	40	40	100	-	100
2.	BTCH309	Fluid Flow Operations	3	2	0	5	3	1	0	4	20	40	40	100	50	150
3.	BTCH303	Applied Chemistry	4	2	0	6	4	1	0	5	20	40	40	100	50	150
4.	BTCH304	Process Calculations	3	0	1	4	3	0	1	4	20	40	40	100	-	100
5.	BTCH305	Mechanical Operations	4	2	0	6	4	1	0	5	20	40	40	100	50	150
7.	AECC301	Entrepreneurship Development	2	0	0	2	2	0	0	2	20	40	40	100	-	100
8.	BTCH307	Industrial Internship	0	0	0	-	0	0	0	2	-	-	-	-	-	100
		Total	19	6	2	27				26						850

Semester – IV

Sr.	Sr. No Course Code]	Feachi (Hou	ng Sche rs/week	me .)		Teachi	ng Cred	dit			Evaluatio	on Scheme		
No ·	Code	Course Name	L	Р	Т	Total	L	Р	Т	Total	Theory: MS Marks	Theory: CEC Marks	Theory: ES Marks	Theory Marks	Practical Marks	Total Marks
1	BTCH401	Chemical Engineering Thermodynamics - I	3	0	1	4	3	0	1	4	20	40	40	100	0	100
2	BTCH402	Heat Transfer Operations	3	2	1	5	3	2	1	5	20	40	40	100	50	150
3	BTCH403	Process Technology	4	2	0	6	4	2	0	5	20	40	40	100	50	150
4	BTCH404	Numerical Methods in Engineering	2	2	0	4	2	2	0	3	20	40	40	100	50	150
5	BTCH405	Materials Science & Engineering	3	0	0	3	3	0	0	3	20	40	40	100	0	100
6	BTCH408	Industrial Pollution Control	2	0	0	2	2	0	0	2	20	40	40	100	0	100
7	AECC401	Environmental Science	2	0	0	2	2	0	0	2	20	40	40	100	0	100
8	BTCH407	Industrial Internship	0	0	0	0	0	0	0	2	-	-	-	-	0	100
		Total	19	6	2	27	19	6	2	26						

Semester – V

Sr.		Course Name		Teaching Scheme (Hours/week)		Teaching Credit		;	Evaluation Scheme							
No ·	Course Code	Course Name	L	Р	Т	Total	L	Р	Т	Total	Theory: MS Marks	Theory: CEC Marks	Theory: ES Marks	Theory Marks	Practical Marks	Total Marks
1	BTCH501	Mass Transfer Operations-I	4	2	0	6	4	1	0	5	20	40	40	100	50	150
2	BTCH502	Chemical Reaction Engineering-I	3	2	1	6	3	1	1	5	20	40	40	100	50	150
3	BTCH503	Chemical Engineering Thermodynamics-II	3	0	1	4	3	0	1	4	20	40	40	100	-	100
4	BTCH504	Instrumentation & Process Control	4	2	0	6	4	1	0	5	20	40	40	100	50	150
5	NOC01	NPTEL Online Courses	0	0	0	0	0	0	0	2	-	-	-	-	-	100
6	AECC501	Disaster Risk Management	2	0	0	2	2	0	0	2	20	40	40	100	-	100
7	BTCH506	Industrial Internship	0	0	0	0	0	0	0	2	-	-	-	-	-	100
		Total	16	6	2	24	16	3	2	25						850

Semester – VI

Sr.			Teaching Scheme (Hours/week)				Teach	ing Cred	lit			Evaluatio	on Scheme			
No ·	Course Code	Course Name	L	Р	Т	Total	L	Р	Т	Total	Theory : MS Marks	Theory: CEC Marks	Theory: ES Marks	Theory Marks	Practica 1 Marks	Total Marks
1	BTCH601	Mass Transfer Operations - II	3	2	1	6	3	1	1	5	20	40	40	100	50	150
2	BTCH602	Chemical Reaction Engineering - II	3	0	0	3	3	0	0	3	20	40	40	100	0	100
3	BTCH603	Process Equipment Design – I	3	2	0	5	3	1	0	4	20	40	40	100	50	150
4	BTCH605	Professional Elective - I	3	0	0	3	3	0	0	3	20	40	40	100	0	100
5	BTOE	Open Elective	3	0	0	3	3	0	0	3	20	40	40	100	0	100
6	AECC601	Indian Constitution	2	0	0	2	2	0	0	2	20	40	40	100	0	100
7	BTCH606	Industrial Internship	0	0	0		0	0	2	2	0	0	0	0	0	100
		Total	17	4	1	22	17	2	3	22						800

Semester – VII

Sr.			Teach	ing Sche	me (Hou	rs/week)		Teachi	ng Cred	it			Evaluatio	n Scheme		
No ·	Course Code	Course Name	L	Р	Т	Total	L	Р	Т	Total	Theory: MS Marks	Theory: CEC Marks	Theory: ES Marks	Theory Marks	Practica l Marks	Total Marks
1	BTCH701	Process Modelling, Simulation and Optimization	4	2	0	6	4	1	0	5	20	40	40	100	50	150
2	BTCH702	Plant Design & Economics	3	0	0	3	3	0	0	3	20	40	40	100	-	100
3	BTCH708	Process Equipment Design - II	2	0	1	3	2	0	1	3	20	40	40	100	-	100
4	BTCH704	Chemical Process Safety	3	0	0	3	3	0	0	3	20	40	40	100	-	100
5	BTCH709	Transport Phenomena	3	0	0	3	3	0	0	3	20	40	40	100	-	100
6	BTCH706	Professional Elective - II	3	0	0	3	3	0	0	3	20	40	40	100	-	100
7	BTCH707	Industrial Internship	0	0	0	0	0	0	0	2	-	-	-	-	-	100
		Total	18	2	1	21	18	1	1	22						750

Semester – VIII

Sr.			Teach	ing Sche	me (Hou	rs/week)	k) Teaching Credit Evaluation Scheme									
No	Course Code	Course Name	т	р	т	Total	т	р	т	Total	Theory:	Theory:	Theory:	Theory	Practica 1 Marks	Total Morika
•			L	r	1	Total	L	r	1	Total	Marks	Marks	ES Marks	Marks	I Marks	Marks
1	BTCH801	Project	0	20	0	20	0	20	0	10	-	-	-	-	100	100

PEC/OEC-I

Course Code	Course Name
BTCH605A	Petroleum Engineering
BTCH605B	Polymer Science & Technology
BTCH605E	Green Technology
BTCH605F	Industrial Engineering Practices
BTCH605G	Advanced Separation Techniques
NOC01	NPTEL Online Courses

PEC/OEC-II

Course Code	Course Name
BTCH706A	Petroleum Refining Processes
BTCH706B	Polymer Processing
BTCH706C	Bioprocess Engineering
BTCH706E	Process Intensification
BTCH706F	Industrial Management Practices
BTOE1	Plant Utilities
BTOE2	Corrosion Science
BTOE8	Energy Technology

Summary of Credits:

Sr. No.	Semester	Course Code	Course Name	Theory marks	Practical marks	Course Credit
1	Ι	BTEC101	Basics of Electrical & Electronics	100	50	4
2	Ι	BTMA103	Mathematics – I	100	0	4
3	Ι	BTCS104	Computer Programming	100	50	4
4	Ι	BTPY105	Engineering Physics	100	50	4
5	Ι	BTME106	Workshop	0	50	1
6	Ι	BTFS108	Fundamentals in Fire & Environment, Health, Safety	0	0	2
7	Ι	AECC101	Fundamentals of English	100	0	2
8	Ι	SECC101	Foundation Course	0	100	4
9	II	BTME202	Engineering Graphics	100	50	4
10	II	BTMA203	Mathematics - II	100	0	4
11	II	BTME209	Engineering Mechanics	100	50	4
12	II	BTCY205	Engineering Chemistry	100	50	4
13	II	BTCS206	Computer Programming-II	0	50	1
14	II	BTME207	AutoCAD	0	50	1
15	II	AECC201	Communication Skills in English	100	0	2
16	II	BTCH208	Industrial Internship	0	100	2
17	III	BTMA301	Mathematics-III	100	0	4
18	III	BTCH309	Fluid Flow Operations	100	50	4
19	III	BTCH303	Applied Chemistry	100	50	5
20	III	BTCH304	Process Calculations	100	0	4
21	III	BTCH305	Mechanical Operations	100	50	5
22	III	AECC301	Entrepreneurship Development	100	0	2
23	III	BTCH307	Industrial Internship	0	100	2
24	IV	BTCH401	Chemical Engineering Thermodynamics - I	100	0	4
25	IV	BTCH402	Heat Transfer Operations	100	50	5
26	IV	BTCH403	Process Technology	100	50	5
27	IV	BTCH404	Numerical Methods in Engineering	100	50	3

School of Technology, GSFC University

Chen	nical E	ngineerin	g Course Curriculum	Acade	emic Year	2023
29	IV	BTCH405	Materials Science & Engineering	100	0	3
30	IV	BTCH408	Industrial Pollution Control	100	0	2
31	IV	AECC401	Environmental Studies	100	0	2
32	IV	BTCH407	Industrial Internship	0	100	2
33	V	BTCH501	Mass Transfer Operations-I	100	50	5
34	V	BTCH502	Chemical Reaction Engineering-I	100	50	5
35	V	BTCH503	Chemical Engineering Thermodynamics-II	100	0	4
36	V	BTCH504	Instrumentation & Process Control	100	50	5
37	V	NOC01	NPTEL Online Courses	-	-	2
38	V	AECC501	Disaster Risk Management	100	0	2
39	V	BTCH506	Industrial Internship	0	100	2
40	VI	BTCH601	Mass Transfer Operations - II	100	50	5
41	VI	BTCH602	Chemical Reaction Engineering - II	100	0	3
42	VI	BTCH603	Process Equipment Design – I	100	50	4
43	VI	BTCH605	Professional Elective - I	100	0	3
44	VI	BTOE	Open Elective	100	0	3
45	VI	AECC601	Indian Constitution	100	0	2
46	VI	BTCH606	Industrial Internship	0	100	2
47	VII	BTCH701	Process Modelling, Simulation and Optimization	100	50	5
48	VII	BTCH702	Plant Design & Economics	100	0	3
49	VII	BTCH708	Process Equipment Design - II	100	0	3
50	VII	BTCH704	Chemical Process Safety	100	0	3
51	VII	BTCH709	Transport Phenomena	100	0	3
52	VII	BTCH706	Professional Elective - II	100	0	3
53	VII	BTCH707	Industrial Internship	0	100	2
54	VIII	BTCH801	Project	0	100	10
			Total			178

COURSE CODE BTEC101	COURSE NAME BASIC OF ELECTRICAL AND ELECTRONICS	SEMESTER I

	Teaching Sch	neme (Hours)		Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture	Total Credit		
3	2	0	5	3	2	0	4

Course Pre-requisites	NIL
Course Category	Engineering Science
Course focus	Skill development
Rationale	Basic electrical and electronics knowledge is essential for understanding modern technology, from everyday applications to career opportunities. It provides a foundation for working with computers, telecommunications, renewable energy, and more. It promotes safety by teaching proper handling of electricity and hazard awareness. This knowledge enables DIY projects, repairs, and problem-solving skills. It also contributes to environmental sustainability by understanding energy consumption and designing efficient systems.
Course Revision/ Approval Date:	24-04-2017
Course Objectives	To enable the student to:
	 Emphasize the fundamental concepts and overview of Electrical Engineering & Electronics. Imparting fundamental knowledge on electronic components
	3: To provide knowledge about electrical machines
	4: To understand about communication engineering concepts
	5: To gain knowledge about test equipment of electrical and electronics.

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Electrical Engineering	20%	10
Theory: Study of voltage, current, power & energy. Application of Ohm's		
law, Kirchhoff's law, Lenz law. Electromagnetic induction through the		

working of a transformer.		
Unit 2: Concept of 1-phase, 3- phase AC supply. Theory: Introduction of terms like RMS value, average value. Familiarity with components like resistors, capacitors, diodes, LED's, their application, uses, industrial specification. Introduction to component data sheets	25%	10
Unit 3: Electrical Machines	25%	10
Theory: Understanding the construction, type, principle of operation of		
various motors like DC, Stepper, Servo, AC. Introduction to the concepts		
of motor selection and sizing.		
Unit 4: Electronics Engineering	20%	10
Theory: Introduction of electronic components like diodes, LED's,		
transistors, O Amps, Gates Industrial specification and data sheets of the		
components. Characteristics and usage of the components. Signals: Analog		
& Digital. Introduction to industrial data acquisition.		
Unit 5: Test Equipment	10%	5
Theory: Introduction to Multimeter and Oscilloscope.		

List Of Practical	Weightage	Contact
		hours
1: Symbols of Electrical & Electronics equipment, Basics of Electrical	20%	3
safety & Study of Electrical Safety rules		
2: Patch cords, Digital Multimeter (DMM), Familiarization with Digital	20%	3
multimeter(DMM).		
3: Measurement of AC Voltage at 230 V AC Mains plug, Measurement of	20%	3
DC Voltage for cell phone battery of 3.8 V DC, Measurement of Resistance		
of Current coil & Potential coil of Energy meter, Measurement of		
Continuity of any wire/fuse.		
4: Study the basics of phase control transformer & verify its turn-ratio,	20%	3
Familiarization with Digital Storage Oscilloscope (DSO)		
5: Understand the construction & working of energy meter, Load Test on 1	20%	3
Phase AC CSCR Type AC Motor, Load Test on DC Shunt Motor.		

Instructional Method and Pedagogy: Teaching basic electrical and electronics, a combination of instructional methods and pedagogies can be employed to enhance learning. A hands-on approach, such as laboratory experiments, allows students to directly engage with circuits and electronic components, reinforcing theoretical concepts.

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Apply the concepts of limits, continuity and derivatives to solve problems.	Cognitive Cognitive	Apply Determine

Chemical Engineering Course Curriculum Academic Year 2023-24

CO2: Determine convergence or divergence of sequences		
and series.	Cognitive	Apply
CO3: Use Taylor and MacLaurin series to represent		
functions. Solve application problems.		
CO4: Understand functions of several variables, limits, continuity, partial derivatives. Identify and solve some	Cognitive	Understand
system of linear equations.	Cognitive	Apply
CO5: To deal with functions of several variables that is essential in most branches of engineering. The essential tool		
of matrices and linear algebra in a comprehensive manner.		

Learning Re	sources
1.	Reference Books:
	 Thomas, G.B., Finney, R.L., Calculus and Analytic Geometry, 9th Ed.,Wesley/Narosa, (1998).
2.	Journals & Periodicals:
	1. Journal of Electrical Engineering and Electronics
	2. IET Power Electronics
	3. International Journal of Electronics
	4. IEEE Transactions on Education:
3.	Other Electronic Resources:
	1. www.electronicsclub.info
	2. <u>www.circuitlab.com</u>

Evaluation Scheme	Total Marks							
Theory: Mid semester	20 marks							
Marks								
Theory: End Semester	40 marks							
Marks								
Theory: Continuous								
Evaluation Component	Attendance	05 marks						
Marks	MCQs	10 marks						
	Open Book Assignment	15 marks						
	Article Review	10 marks						
	Total	40 Marks						

Chemical Engineering Course Curriculum Academic Year 2023-24

Practical Marks

Practical Marks		
	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks
Project/ Industrial		
Internship Marks	Quantity of the Project/Industrial in terms of Language, Presentation & format.	30 marks
	Practical understanding of the subject on the Project/Industrial.	30 marks
	Industry/ University mentor's feedback on the Project/ Industrial.	30 marks
	Attendance	10 marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	2	0	0
CO2	0	3	0
CO3	0	2	0
CO4	0	0	1
CO5	0	0	3
Avg	0.4	1	0.8

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12
CO1	3	1	0	0	0	2	0	0	1	0	0	3
CO2	3	0	0	0	0	1	0	0	2	0	0	3
CO3	3	0	0	0	0	1	0	0	2	0	0	3
CO4	3	0	0	0	0	2	0	0	2	0	0	3
CO5	3	0	0	0	0	1	0	0	1	0	0	3
Avg	3	0.2	0	0	0	1.4	0	0	1.6	0	0	0

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

COURSE CODE	COURSE NAME	SEMESTER
BTMA103	MATHEMATICS-I	Ι

ſ	Feaching Sch	neme (Hours	5)	Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	0	1	4	3	0	1	4

Course Pre-requisites	Differentiation and Integration (Basic calculus), Trigonometry
Course Category	Basic Science
Course focus	Skill Development
Rationale	Mathematics is essential for everyday life, providing practical applications and problem-solving skills. It forms the foundation for science, technology, engineering, and mathematics (STEM) fields. Learning mathematics enhances cognitive development, including critical thinking and analytical skills.
Course Revision/ Approval Date:	24-04-2017
Course Objectives (As per Blooms' Taxonomy)	1: Gives a clear understanding of the ideas of calculus as a solid foundation for subsequent courses in mathematics and other disciplines.
	2: Comprehensive focus on teaching calculus based on concepts as well as procedures.
	3: Enables students to apply their knowledge and solve practical problems in physical sciences and engineering.
	4: Understanding basic concepts of linear algebra (systems of linear equations, matrix calculus, vectors and basic vector operations)
	5: Solving computational problems of linear algebra

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Review of limits, continuity, and differentiability		
Theory: Review of limits, continuity, and differentiability of function of	20%	07
single variable; indeterminate forms and 'Hospital's Rule.		
Unit 2: Sequences and series		
Theory: Sequences and series, Tests for convergence of series (nth term, Comparison, limit comparison, Ratio, Root, Integral, Geometric series,	20%	10

Chemical Engineering Course Curriculum Academic Year 2023-24

Alternating series), Power Series, Taylor Series, Maclaurin's Series.		
Unit 3: Partial Derivatives:		
Theory: Limit and continuity of functions of two variables, chain rule,	20%	10
total derivatives, Taylor's series expansion of function of two variables.		
Unit4: Applications of Partial Derivatives:		
Theory: Maxima and minima, Lagrange multipliers, errors and	20%	08
approximation, implicit functions, tangent plane and normal to a surface.		
Unit 5: Linear Algebra:		
Theory: Elementary operations and their use in getting the Rank, Inverse	20%	10
of a matrix and solution of linear simultaneous equations. Orthogonal,		
Symmetric, Skew-symmetric, Hermitian, Skew-Hermitian, Normal & amp;		
Unitary matrices and their elementary properties. Characteristic		
polynomials, Eigen- values and Eigenvectors of a matrix, Cayley Hamilton		
theorem (without proof) and its use in finding the inverse of a matrix.		
Applications of Matrices.		

List Of Practical Tutorial	Weightage	Contact
Unit 1.	20.9/-	3
Unit 1.	20 /0	3
1.Linnis, Continuity, Differentiability of one variable functions.		
2.Limits, Continuity, Differentiability of two variable functions.		
Unit 2:	20%	3
1.Partial Derivatives: Total Derivatives, Composite functions.		
2.Application of Partial Derivatives: Maxima – Minima of functions,		
Taylor's Series.		
Unit 3:	20%	3
1.Application of Partial Derivatives: Tangent Plane Normal line, Error		
approximation.		
2.Matrices: Rank and Inverse of matrix.		
Unit 4:	20%	3
1.Matrices: Solution of System of linear equations.		
2. Eigen values and Eigenvectors of a matrix.		
Unit 5:	20%	3
1.Convergence and Divergence of Sequence.		
2.Convergence and Divergence of Series.		

Instructional Method and Pedagogy: For engineering mathematics, an effective instructional method involves a combination of problem-based learning, active learning, and technology integration. Engage students in solving real-world engineering problems, promoting critical thinking and application of mathematical concepts. Utilise visualisations, demonstrations, and mathematical software to enhance understanding.

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
CO1: Apply the concepts of limits, continuity and derivatives to solve problems.	Cognitive	Understand
CO2: Determine convergence or divergence of sequences and series	Cognitive	Understand
CO3: Use Taylor and MacLaurin series to represent functions. Solve application problems.	Cognitive	Apply
CO4: Understand functions of several variables, limits, continuity, partial derivatives. Identify and solve some system of linear equations.	Cognitive	Understand
CO5:To deal with functions of several variables that is essential in most branches of engineering. The essential tool of matrices and linear algebra in a comprehensive manners.	Cognitive	Apply

Learning Re	esources
1.	Reference Books:
	Thomas, G.B., Finney, R.LCalculus and Analytic Geometry, 9th Ed., Wesley/Narosa,
	(1998).
2.	Journals & Periodicals:
	1. Journal of Optimization Theory and Applications
	2. Journal of Mathematical Modelling and Algorithms
	3. SIAM Journal on Applied Mathematics
	4. Mathematical Problems in Engineering
3.	Other Electronic Resources:
	1. www.onlinemathlearning.com
	2. <u>www.mathway.com</u>

Evaluation Scheme	Total Marks
Theory: Mid semester Marks	20 marks
Theory: End Semester Marks	40 marks

Chemical Engineering Course Curriculum Academic Year 2023-24

Theory: Continuous			
Evaluation Component	Attendance	05 marks	
Marks	MCQs	10 marks	
	Open Book Assignment	15 marks	
	Open Book Assignment	10 marks	
	Total	40 Marks	
Practical Marks			
	Attendance	05 marks	
	Practical Exam	20 marks	
	Viva	10 marks	
	Journal	10 marks	
	Discipline	05 marks	
	Total	50 Marks	
Project/ Industrial			
Internship Marks	Quantity of the Project/Industrial in terms of Language, Presentation & format.	30 marks	
	Practical understanding of the subject on the Project/Industrial.	30 marks	
	Industry/ University mentor's feedback on the Project/ Industrial.	30 marks	
	Attendance	10 marks	

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	0	2	2
CO2	0	0	1
CO3	0	0	0
CO4	0	2	2
CO5	0	2	3
Avg.	2.4	0.8	0.6

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12
CO1	2	2	3	1	1	0	0	0	0	1	0	2
CO2	2	1	1	0	0	0	0	0	0	1	0	0
CO3	2	1	2	1	0	0	0	0	0	1	0	1
CO4	3	2	2	2	1	0	0	0	0	1	0	2
CO5	3	2	3	3	1	0	0	0	0	1	0	2
Avg.	2.4	1.6	2.2	1.4	0.6	0	0	0	0	1	0	1.4

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

COURSE CODE	COURSE NAME	SEMESTER
BTCS104	COMPUTER	I
	PROGRAMMING-I	

Teaching Scheme (Hours)		Teaching Credit					
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	2	0	5	3	2	0	4

Course Pre-requisites	NIL
Course Category	Engineering Science
Course focus	Skill Development
Rationale	Learning C programming is essential due to its versatility, efficiency, and portability. It provides low-level control and high-level abstraction, making it suitable for a wide range of applications. C offers access to system-level functions, enabling interaction with hardware and development of performance-critical software.
Course Revision/ Approval Date:	24/06/2020
Course Objectives	To enable the student to:
(As per Blooms' Taxonomy)	 To provide the basics of programming components. To develop logics for array and string which will help them to create applications in C. To familiarise students with functions and pointers. To give brief idea about structures in c programming To gain knowledge about file handling using c language

Course Content (Theory)		Contact
		hours
Unit 1: BASICS OF C PROGRAMMING		
Introduction to programming paradigms Structure of C program -C		
programming: Data Types, Storage Classes, Constants, Enumeration	200/	00
Constants, Keywords, Operators, Precedence and Associativity,	20%	09
Expressions, Input / Output statements, Assignment statements, Decision		
making statements, control structure		
Unit 2: ARRAYS AND STRINGS		
Theory: Introduction to Arrays: Declaration, Initialization, One	20%	09
dimensional array, two dimensional arrays. Addition scaling determinant		

Chemical Engineering Course Curriculum Academic Year 2023-24

and Transpose, stein operation: - length, compare, concatenate, copy, b	ubble	
sort, linear and binary search.		
Unit 3: FUNCTIONS AND POINTERS		
Theory: Introduction to functions: Function prototype, function defined	nition,	
function call, Built-in functions (string functions, math funct	ions),	
Recursion, Pointer, pointer operators, Pointer arithmetic: Arrays	s and 20%	09
pointers, Array of pointers, Parameter passing: Pass by value, Pa	ss by	
reference		
Unit 4. STRUCTURES		
Theory: Structure: Nested structures Pointer and Structures Arr	av of	
structures. Solf referential structures, type of Dynamic memory allog	ation: 20%	09
structures, sen-referencial structures, type or, Dynamic memory anoc	ation.	
malloc., calloc, realloc, free().		
Unit 5: FILE PROCESSING		
Theory: Files and file handling operations, types of file proce	ssing:	00
Sequential access, Random access, Sequential access file, Comman	d line	09
argument.		

List Of Practical		Contact
		hours
(1) Program to print "Hello GSFC University".		
(2) Program to find the sum of the 2 numbers.		
(3) Program to find area and circumference of the circle.		
(4) Program to find simple interest.		
(5) Program to convert degree centigrade to Fahrenheit.		
(5) Program to calculate sum of 5 objects and print average.		
(6) Program to show swapping of 2 numbers without using the third		
variable.		
(7) Program to show swapping of 2 numbers using a third variable. B.		
Control Structures: IF, Switch, Loops		
(8) Program to show reverse of given number.	20%	
(9) Program to find greatest among 3 numbers.	2070	6
(10) Repeat program10 with conditional operator.		
(11) Program to find that entered year is Leap year or not.		
(12) Program to find the given number is even or odd.		
(13) Program to use Switch statement, Display percentage of student.		
(14) Program to display arithmetic operations using Switch.		
(15) Program to display first 15 natural numbers and their sum using For		
Loop.		
(16) Program to print Patterns		
(17) Program to print Fibonacci series till 40.		
(18) Program to find factorial of given number.		
(19) Program to find whether a given number is prime or not.		
2:		
(20) Program to create an array of 10 elements. Show the sum and average	20%	
of 10 elements entered by the user.	2070	
(21) Program to find maximum number in given Array.		6

(22) Program to display matrix.		
(23)Program to find sum of two Matrices.		
(24)Program to find subtraction of two matrices.		
(25)Program to find multiplication of two matrices.		
3:		
(26)Program to find factorial of given number using function.		
(27) Program to show table of given number using function.		
(28)Program to show call by value.		
(29) Program to show call by reference. 36. Program to find the largest		
among two using functions.		
(30) Write a program to show how similar name variables can be used in		
different functions.		
(31) Write a program to return more than one value from a function.		
(32) Program for passing array from main function to display function.	20%	6
(33) Write a program in C to show the basic declaration of pointer.		
(34) Write a program in C to demonstrate how to handle the pointers in the		
program.		
(35) Write a program in C to demonstrate the use of &(address of) and		
*(value at address) operator.		
(36) Write a program in C to add two numbers using pointers.		
(37) Write a program in C to add numbers using call by reference.		
(38) Write a program in C to store n elements in an array and print the		
elements using a pointer.		
4:		
(38) Write a program to demonstrate declaration of structures.		
(39) Write a program to store student information using Structure.		
(40) Write a program to add two distances.	200/	(
(41) Write a program to store 10 student's information using structures.	20%	0
(42) Write a program to demonstrate nested structures.		
(43) Write a program to demonstrate how pointers will be used to create and		
access structure		
5:		
(44) Write a program to create a file and store information.		
(45) Write a program to read contents from a file.	20%	6
(46) Write a program to append content at the end of file.		

Instructional Method and Pedagogy: C programming, an effective instructional method involves a combination of hands-on programming, step-by-step guidance, code review and feedback, collaborative learning, and real-world application. Engage students in practical coding exercises and projects, breaking down complex concepts into manageable steps.

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
CO1: Gain basic understanding of basic components of programming language.	Cognitive	Understand
CO2: Understand any other programming language with the knowledge of array and string.	Cognitive	Understand
CO3: Apply function concepts in real time applications.	Cognitive	Apply
CO4: Analyse working of structure in c or other programming language programs.	Cognitive	Analyse
CO5: Students will be able to develop applications using C Programming	Cognitive	Apply

Learning Re	sources
1.	Reference Books:
	 "The C Programming Language" by Brian W. Kernighan and Dennis M. Ritchie:
	 "C Programming Absolute Beginner's Guide" by Greg Perry and Dean Miller:
2.	Journals & Periodicals:
	1. ACM Transactions on Programming Languages and Systems
	2. IEEE Transactions on Software Engineering
3.	Other Electronic Resources:
	1. <u>https://www.gnu.org/software/libc/manual/</u>
	2. <u>https://www.learn-c.org/</u>

Evaluation Scheme	Total Marks
Theory: Mid semester Marks	20 marks
Theory: End Semester Marks	40 marks

Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open Book Assignment	15 marks
	Open Book Assignment	10 marks
	Total	40 Marks
Practical Marks		
	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks
Project/ Industrial		
Internship Marks	Quantity of the Project/Industrial in terms of Language, Presentation & format.	30 marks
	Practical understanding of the subject on the Project/Industrial.	30 marks
	Industry/ University mentor's feedback on the Project/ Industrial.	30 marks
	Attendance	10 marks
	Total	100 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	1	1	3
CO2	1	2	3
CO3	1	2	3
CO4	1	2	3
CO5	3	3	3
Avg.	1.4	2	3

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12
CO1	1	0	0	1	3	0	0	0	0	0	0	2
CO2	1	0	1	1	3	0	0	0	0	0	0	2
CO3	1	0	1	1	3	0	0	0	0	0	0	2
CO4	1	0	2	1	3	0	0	0	2	1	0	2
CO5	1	2	3	1	3	0	1	0	3	2	0	2
Avg.	1	0.4	1.4	1	3	0	0.2	0	1	0.6	0	2

COURSE CODE	COURSE NAME	SEMESTER
BTPY 105	ENGINEERING PHYSICS	I

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial			
3	2	0	5	3	2	0	4

Course Pre-requisites	NIL
Course Category	Basic Science
Course focus	Skill Development
Rationale	Engineering physics combines the principles of physics and engineering, bridging the gap between theory and practical applications. It equips students with problem-solving skills, a deep understanding of scientific principles, and the ability to apply them to engineering challenges.
Course Revision/ Approval Date:	24-04-2017
Course Objectives	To enable the student to:
(As per Blooms' Taxonomy)	 To familiarise with basics of Noise, Vibrations and Oscillations To inculcate fundamental knowledge of Electromagnetism and its engineering applications
	3: To develop basic understanding for different applications of optical phenomena
	4: To embrace optical technologies and understand their functioning
	5: To familiarise with introductory quantum physics and its importance

Course Content (Theory)	Weightage	Contact hours
Unit 1: Noise and Vibrations		
Theory: Concept of Noise and its sources. Noise Terminology. Definition	25%	12
of Harshness, acceptable levels and perception. Sources of Vibrations.		
Simple harmonic motion. Damped harmonic oscillator and its energy		
decay, Quality factor. Forced harmonic oscillator and its steady-state		
motion. Power absorbed by the oscillator. Resonance. Analogy between		

09
09
09
07
08

List Of Practical	Weightage	Contact
		hours
1:	20%	8
(1) To determine the frequency of vibrations on a string using Melde's		
experiment		
(2) To determine the frequency of the A.C. mains source using a Sonometer		
2:	20%	6
(3) To determine magnetic hysteresis Properties of ferromagnetic materials.		
(4) To find the horizontal component of earth's magnetic field using a		
tangent galvanometer		
(5) To determine the magnetic dipole moment of a bar magnet and		
horizontal intensity of a bar magnet and horizontal intensity of earth's		
magnetic field using a deflection magnetometer.		
3:	20%	8
(6) To determine the wavelength of Monochromatic source using		
diffraction gratings.		
(7) To determine the dispersive power of a grating.		
(8) To determine wavelength of light using Newton's rings setup.		
(9) To determine refractive index of liquids using Newton's Ring (Virtual		
Lab)		
4:	20%	4
(10) To determine the specific rotation of sugar using a polarimeter (using		
setup/virtual lab).		
5:	20%	4
(11) To determine Planck's constant using photoelectric effect setup.		
(12) To determine work function of the given material using photoelectric		

Instructional Method and Pedagogy: The pedagogy should emphasize the integration of theory and practical applications, promote active learning through interactive discussions and collaborative projects, and provide opportunities for students to explore and analyze complex engineering systems.

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Understanding of the basic knowledge of harmonic motions.	Cognitive	Understand
CO2: Conceptualization of different electric and magnetic properties of materials	Cognitive	Analyze
CO3: Understanding different engineering applications of optical fundamentals	Cognitive	Understand
CO4: Conceptualization of construction and working of lasers	Cognitive	Analyse
CO5: To embrace the concept of quantum physics and have a basic understanding of its principles.	Cognitive	Apply

Learning Re	sources
1.	Reference Books:
	1. Textbook of Engineering Physics by Dr. P. S. Aithal and Dr. H. J. Ravindra, ACME Learning
	2. Engineering Physics by S K Nayak and K.P. Bhuvana, Tata McGraw-Hill Education.
2.	Journals & Periodicals:
	 IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control Journal of Magnetism and Magnetic Materials:
3.	Other Electronic Resources:
	 phet.colorado.edu openstax.org

Evaluation Scheme	Total Marks		
Theory: Mid semester Marks	20 marks		
Theory: End Semester Marks	40 marks		
Theory: Continuous Evaluation Component Marks	Attendance	05 marks	
	Open Book Assignment	15 marks	
	Open Book Assignment Total	10 marks 40 Marks	
Practical Marks	Attendance	05 marks	
	Practical Exam	20 marks	
	Viva	10 marks	
	Journal	10 marks	
	Discipline	05 marks	
	Total	50 Marks	
Internship Marks	Quantity of the Project/Industrial in terms of Language, Presentation & format.	30 marks	
	Practical understanding of the subject on the Project/Industrial.	30 marks	
	Industry/ University mentor's feedback on the Project/ Industrial.	30 marks	
	Attendance	10 marks	
	Total	100 Marks	

Chemical Engine Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	1	1	3
CO2	1	2	3
CO3	1	2	3
CO4	1	2	3
CO5	3	3	3
Avg.	2	1	1

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12
CO1	1	0	0	1	3	0	0	0	0	0	0	2
CO2	1	0	1	1	3	0	0	0	0	0	0	2
CO3	1	0	1	1	3	0	0	0	0	0	0	2
CO4	1	0	2	1	3	0	0	0	2	1	0	2
CO5	1	2	3	1	3	0	1	0	3	2	0	2
Avg.	2	0.6	0.2	0.2	0.6	2	0.6	0	1	1	0	1

COURSE CODE	COURSE NAME	SEMESTER
BTME106	WORKSHOP	Ι

Teaching Scheme (Hours)				Teachin	g Credit		
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
0	2	0	2	0	2	0	1

Course Pre-requisites	NIL
Course Category	Engineering Science
Course focus	Skill Development
Rationale	
Course Revision/	24/06/2020
Approval Date:	
Course Objectives	To enable the student to:
(As per Blooms' Taxonomy)	1: To give basic training on fitting, carpentry, sheet metal, machine shop, and black smithy
	2: To enable students to understand and practice joining techniques.
	3: To train students to handle various machine tools.
	4: To enable students to understand basic mechanical engineering concepts.
	5: To enable students to fabricate components with their own hands.

Course Content (Theory)	Weightage	Contact hours
Unit 1: Introduction Introduction, Workshop layout, Importance of various sections/shops of workshop, Types of jobs done in each shop. General safety rules and work procedure in workshop. Measuring Instruments.	20%	09
Unit 2: Welding Theory: Overview of arc and spot-welding operations.	20%	09
Unit 3: Fitting Theory: Overview of fitting operations	20%	09
Unit 4: Black smithy Theory: Overview of smithy processes	20%	09

09

Unit 5: Machining Theory:

Overview of Lathe and shaper machines.

List Of Practical	Weightage	Contact
		hours
1: Introduction to Engineering Workshop. Know general safety rules and	7%	2
work procedure of engineering workshop		
2: Sketch the layout of engineering workshop. Study the different shops and	7%	2
types of jobs done in each shop of engineering workshop		
3: Study about basic Measuring Instruments used in workshop.	7%	2
4: Study of Arc welding machine and its accessories.	7%	2
5: Demonstrate and perform job by using Arc welding machine.	7%	2
6. Study of Fitting tools.	7%	2
7. Demonstrate and perform job by using Fitting tools	7%	2
8. Study of Black smithy tools	7%	2
9. Demonstrate and perform job by using Black smithy tools.	7%	2
10. Study of Tinsmithy tools.	7%	2
11. Demonstrate and perform job by using Tinsmithy tools.	7%	2
12. Study of Lathe machine	7%	2
13. Demonstrate different operations on Lathe machine.	7%	2
14. Study of Shaper machine.	7%	2
15. Demonstrate different operations on Shaper machine	7%	2

Instructional Method and Pedagogy: The instructional methods and pedagogies for teaching ICT involve a combination of theoretical knowledge and practical application.

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: To give basic knowledge on fitting, carpentry, sheet metal, machine shop, and black smithy.	cognitive	Understand
CO 2: To enable students to understand and practice joining techniques	cognitive	Understand
CO 3: To give knowledge and train students to handle various machine tools.	cognitive	Understand
CO4: To enable students to understand basic mechanical engineering concepts.	cognitive cognitive	Understand Understand
CO5: To enable s tudents to fabricate components with their own hands.		

Learning Re	sources
1.	Reference Books:
	1. Hajra Choudhary, S. K., Elements of Workshop Technology, Media Promotors& Publishers Pvt. Ltd, 12thEdition, (2002).
	2. Chapman, W.A.J., Workshop Technology, ELBS Low Price Text, Edward Donald Pub. Ltd., (1961).
	3. Singh, D.K., Fundamentals of Manufacturing Engineering, Ane Books Pvt. Ltd, New Delhi, 2nd Edition, (2009).
	4. Raghuwanshi, B.S., Course in Workshop Technology, DhanpatRai & Sons, New Delhi, (1991)
2.	Journals & Periodicals:
	1. Journal of Manufacturing Processes
	2. Procedia Manufacturing
	3. Manufacturing Letters "
3.	Other Electronic Resources:
	http://www.weldingtechnology.org
	http://www.piehtoolco.com/
	http://sourcing.indiamart.com/engineering/articles/materials-used-hand-tools/

Evaluation Scheme	Total Marks					
Theory: Mid semester Marks	00 marks					
Theory: End Semester Marks	00 marks					
Theory: Continuous						
Evaluation Component	Attendance	00 marks				
Marks	MCQs	00 marks				
	Open Book Assignment	00 marks				
	Open Book Assignment	00 marks				
	Total	00Marks				
Practical Marks						
	Attendance	05 marks				
	Practical Exam	20 marks				

Discipline 05 marks	
Journal 10 marks	
Viva 10 marks	

Mapping of PSOs & COs

	PSO1	PSO2	PSO2
C01	1	1	1
CO2	1	1	1
CO3	1	1	1
CO4	1	1	1
CO5	1	1	1
Avg.	1	1	1

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12
CO1	3	2	2	3	2	0	2	0	0	2	2	3
CO2	3	3	3	3	2	0	3	0	0	3	3	3
CO3	3	2	3	3	2	0	2	0	0	2	3	3
CO4	3	1	3	3	3	0	1	0	0	1	3	3
CO5	3	2	2	3	2	0	2	0	0	2	2	3
Avg.	3	2	2.6	3	2.2	0	2	0	0	2	2.6	3

COURSE CODECOURSE NAMESEMESTERBTFS108FUNDAMENTALS OFIFIRE, SAFETY, HEALTH&ENVIRONMENT

Teaching Scheme (Hours)				Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
2	0	0	2	2	0	0	2

Course Pre-requisites	NIL
Course Category	Engineering Science
Course focus	Employability
Rationale	The rationale behind fire and environmental safety as a subject is to educate individuals and communities about the risks associated with fire and other environmental hazards, and to promote strategies and practices that minimize those risks.
Course Revision/ Approval Date:	24/06/2020
Course Objectives	To enable the student to:
(As per Blooms' Taxonomy)	1: Understand the fire, safety, health and environment challenges in the built and industrial environment and approaches to addressing the same.
	2: Become aware of important past incidents causing major loss of life & property and damage to environment, and their impact with respect to safety legislation and environment
	3: History and current role of Fire & EHS related legislation and role of agencies involved with implementation
	4: Understand approaches for addressing fire and EHS challenges in the industrial environment.
	5: Become familiar with current fire & safety engineering and management concepts and practices followed in the industry

Course Content (Theory)	Weightage	Contact
		hours
Unit 1:	20%	8
Theory: Challenges to safety in built environment, types of hazards likely		
to cause harm (fire, burns, electric shock, falls), natural disasters, fatalities		

ਜੇਰ	involving hazardous environments. Important Case studies involving major incidents and their subsequent effect on safety outlook. Approach to addressing Fire & EHS challenges at organization and national level.		
	Unit 2: The concept of industrial safety, health and environment - need, nature and importance. Focus on Human resource, and the concept of importance of 'man' as central theme in safety. Concept of accident prevention, occupational health and environmental protection. Problems of Industrial safety, occupational health and environmental pollution & modern concept of SHE.	20%	05
	Unit 3: History and role of building codes and safety legislation, concept of safety versus risk, enforcement of codes and standards, role of government agencies and emergency services in enforcing legislation, government framework and infrastructure involved in safety legislation enforcement. Role of code enforcement, plan review and approval, record keeping, public education	20%	04
	Unit 4: Industrial Fire & Safety management concepts – hazard identification and risk assessment, risk reduction and control methods. Design aspects such as segregation and separation, fire resisting construction, emergency exit arrangements, access for emergency agencies, fire protection systems, safe operational practices, maintenance and upkeep of systems, planning for emergency response. Design approaches for fire and safety, NFPA fire safety concepts tree.	20%	05
	Unit 5: Environmental Pollution Air Pollution Sources and effects of air pollution, NAAQS Basic principles of air pollution control devices Global effects of air pollution, Air Pollution due to automobiles, photochemical smog. Water Pollution: Sources and effects, Effluent standards Domestic and Industrial wastewater and treatment principles, Land pollution:- Solid waste, solid waste management by land filling, composting. Social Issues and the environment, from unsustainable to sustainable development, urban problems related to energy, water conservation, rain water harvesting, watershed management, resettlement and rehabilitation of people; its problems and concerns.	20%	08

Instructional Method and Pedagogy: The instructional method and pedagogy of the fire and safety subject typically involve a combination of theoretical knowledge, practical training, and hands-on exercises.

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to: CO1: Students will understand the fire and EHS challenges faced in the built and industrial environment, and	Cognitive	Understand
the current approaches taken to address the same. CO2: Students will learn about major incidents which affected industrial and societal attitude towards safety.	Cognitive	Learn
CO3: Students will become familiar with the history and development of fire & safety legislation, their current form and role of different agencies involved in their implementation.	Cognitive	Familiar
CO4: Students will be able to understand the different design approaches for addressing the fire & life safety challenges inbuilt and industrial environments	Cognitive	Analyse
CO5: Students will become aware of the different engineering and management concepts applied for addressing fire and safety risks in industrial scenarios.	Cognitive	Apply

Learning Re	esources						
1.	Reference Books:						
	 Cheunisinoff Graffia, Environmental Health & Safety Management, Reprint Jaico Publishing House. Tarafdar, Industrial Safety Management 						
2.	Journals & Periodicals:						
	 International Journal of Environmental Research and Public Health Journal of Occupational and Environmental Hygiene 						
3.	Other Electronic Resources: OSHA, NFPA ,EPA Provides information on environmental regulations, guidelines, and resources.						

Evaluation Scheme	Total Marks
Theory: Mid semester Marks	20 marks
Theory: End Semester Marks	40 marks

Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open Book Assignment	15 marks
	Open Book Assignment	10 marks
	Total	40 Marks
Practical Marks		
	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks
Project/ Industrial		
Internship Marks	Quantity of the Project/Industrial in terms of Language, Presentation & format.	30 marks
	Practical understanding of the subject on the Project/Industrial.	30 marks
	Industry/ University mentor's feedback on the Project/ Industrial.	30 marks
	Attendance	10 marks
	Total	100 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	2	1	1
CO2	2	2	1
CO3	1	1	0
CO4	1	2	0
CO5	0	2	0
Avg.	1.2	1.6	0.4

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12
CO1	3	1	0	1	3	2	2	2	2	1	1	2
CO2	1	3	2	3	2	2	1	1	2	1	2	2
CO3	3	1	0	1	3	2	2	1	2	1	1	2
CO4	3	1	0	1	3	2	2	1	2	1	2	2
CO5	3	1	0	1	3	2	2	1	2	1	2	2
Avg.	2.6	1.4	0.4	1.4	2.8	2	1.8	1.8	2	1	1.2	2

COURSE NAME FUNDAMENTALS OF ENGLISH

SEMESTER

Ι	

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
2	0	0	2	2	0	0	2

Course Pre-requisites	NIL
Course Category	Ability Enhancement
Course focus	Soft Skills
Rationale	English is recognized as the most widely spoken language around the world. It serves as a common language for international communication, business, diplomacy, and tourism. By studying English, individuals gain the ability to connect with people from diverse cultures and backgrounds, facilitating effective global communication.
Course Revision/ Approval Date:	24-04-2017
Course Objectives	To enable the student to:
(As per Blooms' Taxonomy)	1: To emphasize the development of listening and reading skills among learners
	2. To equip them with writing skills needed for academic as well as workplace context
	3. To enable learners of Engineering and Technology develop their basic communication skills in English
	4. To strengthen the fundamentals in English Language.
	5. To build up the confidence to communicate with the world.

Course Content (Theory)	Weightage	Contact
		nours
Unit 1: Language Basics	20%	8
Parts of speech, word formation, prefix-suffix, synonyms, antonyms,		
homophones and standard abbreviations.		
Unit 2: Elementary Reading/Writing Skills		
Types of the sentences, structures of the sentences, use of phrases and		
clauses, punctuation, creative writing and coherence, comprehension,	20%	05
essay/paragraph writing, precise writing.		
Unit 3: Elementary Spoken Skills		

र्वत	Greetings, farewell and introduction, making an apology, accepting an	••••	
	apology, making an appointment, JAM, group discussion, debate, public	20%	04
	speaking.		
	Unit 4: Practicing and Identifying the Common Error		
	Tense, subject-verb agreement, noun-pronoun agreement, articles,		
	prepositions, modal auxiliaries, voice, reported speech.	20%	05
	Unit-5: Writing Skills & Speaking Skills		
	Letter writing - Complaint & Leave, Article, Precise writing, Report		
	writing, Note taking and Note making, Creative Writing Introducing self,	20%	08
	Interview Skills, Public Speaking, Debates, Role plays, Group Discussion		

Instructional Method and Pedagogy: PPT +Video+ Chalk Board

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:	Cognitive	
CO1: To emphasize the development of listening and reading skills among learners	Cognitive	Analyse
CO2. To give them knowledge of writing skills needed for academic as well as workplace context		Apply
CO3. To enable learners of Engineering and Technology develop their basic communication skills in English	Cognitive	Understand
CO4. To make them apply fundamentals of in English Language in daily life.	Cognitive	Create
CO5. To make them confident to communicate with the world.	Cognitive	Create

Learning Re	sources					
1.	Reference Books:					
	 Thorpe, Edgar and Showick Thorpe "Basic Vocabulary" Pearson Education India, 2012. Green, David. "Contemporary English Grammar Structures and Composition" MacMillan Publishers, New Delhi, 2010. Wren & Martin (2001), English Grammar & Composition, New York. Essential English Grammar Raymond Murphy (2000) Cambridge 					
2.	Journals & Periodicals:					
	Journals:					
	1. 'The Journal' Basic English Grammar					

tita goald	2. 'Fluent U' English Language and Cultural Journal
	3. 'The Journal of English Academics'
	4. 'Elsevier' The research on language
	Periodicals:
	1. Index Noedicus : A Cumulative Index to English Language Periodicals
	2. The Illustrated English Language Periodicals
3.	Other Electronic Resources: Wordsworth - Language Software.

Evaluation Scheme	Total Marks	
Theory: Mid semester	20 marks	
Marks		
Theory: End Semester	40 marks	
Marks		
Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open Book Assignment	15 marks
	Open Book Assignment	10 marks
	Total	40 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	1	1	1
CO2	1	1	1
CO3	1	1	1
CO4	1	1	1
CO5	1	1	1
Avg.	1	1	1

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12
CO1	3	2	2	3	2	0	0	0	0	0	0	0
CO2	3	3	3	3	2	0	0	0	0	0	0	0
CO3	3	2	3	3	2	0	0	0	0	0	0	0
CO4	3	1	3	3	3	0	0	0	0	0	0	0
CO5	3	2	2	3	2	0	0	0	0	0	0	0
Avg.	3	2	2.6	3	2.2	0	0	0	0	0	0	0

BTME202	ENGINEERING GRAPHICS	SEMESTER
		II

J	Feaching Sch	neme (Hours	\$)		Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
2	4	0	6	2	2	0	4

Course Pre-requisites	Zeal to learn the subject
Course Category	Engineering Science Courses
Course focus	Employability
Rationale	The subject of Engineering Graphics is of utmost importance as it serves as a universal language for engineers, facilitating clear communication and understanding of technical information on a local, national, and international scale.
Course Revision/ Approval Date:	06/07/2023
Course Objectives	To enable the student to:
(As per Blooms' Taxonomy)	1: Understand the importance of engineering graphics in various engineering disciplines and its role in effective communication of design and technical information.
	2: Develop proficiency in using drawing instruments and applying BIS - SP46 standards for engineering drawings, ensuring accuracy and adherence to industry norms.
	3: Acquire skills in projection techniques for points, lines, planes, and solids, including determining projections with different inclinations to reference planes.
	4: Demonstrate the ability to create accurate orthographic projections, sectional views, and isometric drawings, ensuring clear and concise representation of objects in different views.
	5: Apply geometric construction methods for precise creation and manipulation of shapes, enhancing problem-solving and design skills.

Course Content (Theory)	Weightage	Contact hours
Unit 1: Introduction to Engineering Graphics & Engineering Curves:	20%	06

Introduction, Drawing Instruments and Their Uses, BIS - SP46, Sheet		
Layout, Types Of Lines And Its Applications, Lettering, Dimensioning		
Methods, Scales, And Geometric Construction.		
Introduction, Classification of Engineering Curves, Conic Curves (Ellipse,		
Parabola, And Hyperbola), Cycloid, Involute, And Spiral.		
Unit 2: Projection of Points and Lines	20%	06
Introduction to Point and Lines Tracing of Lines, Projections Of The Points		
Located In Same Quadrant And Different Quadrants, Types Of Plane,		
Projections Of Line With Its Inclination To One Reference Plane And With		
Two Reference Planes, True Length Of The Line And Its Inclination With		
The Reference Planes.		
Unit 3: Projections of Planes, Solids, & Section of Solids.:	20%	06
Introduction, Projections of planes (polygons, circle and ellipse) with its		
inclination to one reference plane and with two reference planes, Concept		
of auxiliary plane method for projections of the plane		
Introduction, Classification of Solids, Projections of Solids Like Cylinder,		
Cone, Pyramid and Prism with Its Inclination to One Reference Plane and		
With Two Reference Planes. Section of Solids: Introduction, Section of		
Prism, Pyramid, Cylinder, And Cone, The True Shape of The Section.		
Unit 4: Development of Lateral Surfaces:	20%	06
Introduction, Concept of Development of The Different Surfaces, Parallel		
Line Development and Radial Line Development.		
Unit 5: Orthographic Projection & Isometric Projection:	20%	06
Introduction, Principle of Projection, Method of Projection, Planes of		
Projection. First and Third Angle Projection Methods, Sectional Views,		
Orthographic Reading.		
Introduction, Isometric Axis, Isometric Scale, Isometric Drawing and		
Isometric View. Conversion of Orthographic Views to Isometric		
Projection/Drawing.		

List Of Practical	Weightage	Contact
		hours
1: Introduction of dimensioning methods, various scales, different types of	12 %	06
line, construction of different polygon, etc		
2: Solve problems on dimensioning methods, various scales, etc. and draw	12 %	06
them on A2 size drawing sheet		
3: Solve problems on conic section and draw them on A2 size drawing sheet	12 %	06
4: Solve problems on engineering curves and draw them on A2 size drawing	12 %	06
sheet		
5: Solve problems on Projection of line and draw them on A2 size drawing	12 %	06
sheet		
6: Solve problems on Projection of plane and draw them on A2 size drawing	12 %	06
sheet		
7: Solve problems on Projection of solid and draw them on A2 size drawing	12 %	06
sheet		
8: Solve problems on Development of surface.	12 %	06
9: Solve problems on Orthographic projection and draw them on A2 size drawing sheet	12 %	06

10: Solve problems on Isometric projection and draw them on A2 size	12 %	06
drawing sheet		

Instructional Method and Pedagogy: Instructional Method and Pedagogy for Engineering Graphics: Lecture-based instruction, hands-on practice, group discussions, interactive demonstrations, real-world applications, assessments with feedback, technology integration, field trips, and guest lectures facilitate comprehensive learning, critical thinking, and practical skills development, highlighting the subject's local, national, and international relevance.

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO 1: Understand and apply fundamental principles of engineering graphics, including drawing techniques, dimensioning methods, and use of scales, for accurate and standardized representation of engineering designs.		Understand Understand
CO 2: Develop proficiency in projection techniques for points, lines, planes, and solids, enabling the creation of accurate orthographic projections and sectional views.	Cognitive	Chadistand
CO 3: Acquire skills in geometric construction to solve complex design problems and accurately create and manipulate various shapes and objects.		Apply
CO 4: Demonstrate proficiency in interpreting and creating isometric drawings, allowing for clear visualization and communication of three-dimensional objects.		Analyz
CO 5: Apply engineering graphics concepts in real-world contexts, including the use of industry-standard, to effectively communicate designs and collaborate with other engineering professionals.		Apply

Learning Re	sources
1.	Reference Books:
	P.J. Shah, "A Textbook of Engineering Graphics", S. Chand& Company Ltd. N. D. Bhatt "Engineering drawing" Character publication
	 Arunoday Kumar, "Engineering Graphics", Tech – Max Publication, Pune.
	➢ T. Jeyapoovan, "Engineering Drawing & Graphics using Auto CAD 2000",
	Vikas Publishing House Pvt. Ltd., New Delhi

	P.S. Gill, "A textbook of Engineering Drawing", S.K. Kataria& sons, Delhi.
	> D.A. Jolhe, "Engineering Drawing with an Introduction to Auto CAD", Tata
	McGraw-Hill Publishing Co. Ltd., New Delhi.
	➢ R.K. Dhawan, "A textbook of Engineering Drawing", S. Chand& Company
	Ltd., New Delhi.
	Shah, M.B., Rana, B.C., Engineering Drawing, 2ndEdition, Pearson
	Education, (2009).
	▶ French, T.E., Vierck, C.J., Foster, R.J., Graphic Science and Design,
	4thEdition, McGraw Hill, (1984).
	> Venugopal, K., Engineering Drawing and Graphics,
	3rdEdition, New Age International, (1998).
2	Journals & Periodicals
	Computer-Aided Design
	 Computer-Aided Design Computers & Graphics
	 Computer-Aided Design Computers & Graphics Journal of Engineering Design
	 Computer-Aided Design Computers & Graphics Journal of Engineering Design Computer-Aided Geometric Design
	 Computer-Aided Design Computers & Graphics Journal of Engineering Design Computer-Aided Geometric Design International Journal of Computer Integrated Manufacturing
	 Computer-Aided Design Computers & Graphics Journal of Engineering Design Computer-Aided Geometric Design International Journal of Computer Integrated Manufacturing Journal of Visualization
	 Computer-Aided Design Computers & Graphics Journal of Engineering Design Computer-Aided Geometric Design International Journal of Computer Integrated Manufacturing Journal of Visualization Engineering Computations
3	 Computer-Aided Design Computers & Graphics Journal of Engineering Design Computer-Aided Geometric Design International Journal of Computer Integrated Manufacturing Journal of Visualization Engineering Computations
3	 Computer-Aided Design Computers & Graphics Journal of Engineering Design Computer-Aided Geometric Design International Journal of Computer Integrated Manufacturing Journal of Visualization Engineering Computations
3	 Computer-Aided Design Computers & Graphics Journal of Engineering Design Computer-Aided Geometric Design International Journal of Computer Integrated Manufacturing Journal of Visualization Engineering Computations Other Electronic Resources NPTEL-Engineering Drawing, IIT Guwahati NPTEL Engineering Complian and Design UT Dethi
3	 Computer-Aided Design Computers & Graphics Journal of Engineering Design Computer-Aided Geometric Design International Journal of Computer Integrated Manufacturing Journal of Visualization Engineering Computations Other Electronic Resources NPTEL-Engineering Drawing, IIT Guwahati NPTEL-Engineering Graphics and Design, IIT Delhi Enginearing Toolbox
3	 Computer-Aided Design Computers & Graphics Journal of Engineering Design Computer-Aided Geometric Design International Journal of Computer Integrated Manufacturing Journal of Visualization Engineering Computations Other Electronic Resources NPTEL-Engineering Drawing, IIT Guwahati NPTEL-Engineering Graphics and Design, IIT Delhi Engineering Toolbox Autodeck Knowledge Network

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous Evaluation Component Marks	AttendanceMCQsOpen Book AssignmentArticle ReviewTotal	05 marks 10 marks 15 marks 10 marks 40 Marks

Practical Marks		
	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	1	2	3
CO2	1	1	1
CO3	1	1	2
CO4	1	2	1
CO5	3	3	3
Avg.	1.4	1.8	2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	0	0	1	3	0	0	0	0	1	0	2
CO2	1	0	1	1	3	0	0	0	0	1	0	2
CO3	1	0	1	1	3	0	0	0	0	1	0	2
CO4	1	0	2	1	3	0	0	0	2	1	0	2
CO5	1	2	3	1	3	0	1	0	3	1	0	2
Avg.	1	0.4	1.4	1	3	0	0.2	0	1	1	0	2

BTMA203	MATHEMATICS-II	SEMESTER
		II

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	0	1	4	3	-	1	4

Course Pre-requisites	Basic Mathematics
Course Category	Core
Course focus	Employability
Rationale	
Course Revision/	24/06/2020
Approval Date:	
Course Objectives	To enable the student to:
(As per Blooms'	1: Knowledge of Identifying and solve some ordinary differential
Taxonomy)	equations.
	2: To Evaluate some experiments, form ordinary differential equations.
	3: Analyse and solve engineering problems using Statistics
	4: Apply the multiple integration in the area of engineering.
	5. Evaluate vector valued function in the area of vector calculus.

Course Content (Theory)	Weightage	Contact
	0	hours
Unit 1: First Order First Degree Differential Equation	20%	08
First ordered odes: Exact equations, Integrating factors, Linear and		
Bernoulli's equation, Homogeneous equation, Applications of first order		
equations: Orthogonal trajectories, Mixture problem, and Temperature		
problem.		
Unit 2: Higher order differential equation	20%	10
Higher ordered Linear ODEs with constant coefficients, Wronskians,		
Differential operators, Method of solving homogeneous equations, Non-		
homogeneous equations, Inverse operators, Methods of solving non-		
homogeneous equations. Cauchy- Euler equations, Method of		
undetermined coefficients, Method of variation of parameters.		
Unit 3: Probability and Statistics:	20%	10
Definitions of probability, sampling theorems, conditional probability;		
mean, median, mode and standard deviation; random variables, binomial,		

Poisson and normal distributions.		
Unit 4: Multiple Integration	20%	10
Double and Triple integration, Change of order of double integration,		
double integration in Polar form, Jacobians and change of variables		
formula. Applications to find area and volume.		
Unit 5: Vector Calculus	20%	07
Vector valued functions, gradient and directional derivatives, Divergence		
and curl, Vector identities. Line Integral and Green's Theorem.		

Instructional Method and Pedagogy: (Max. 100 words)

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Knowledge of Identifying and solve some ordinary differential equations.		Knowledge
CO2: To evaluate some experiments, form ordinary differential equations.		Evaluate
CO3: Analyse and solve engineering problems using Statistics	Cognitive	Understand
CO4: Apply the multiple integration in the area of engineering.		Apply
CO5. Evaluate vector valued function in the area of vector calculus.		Evaluate

Learning Re	sources
1.	Reference Books:
	Kreyszig, E., Advanced Engineering Mathematics, 8th Edition, Wiley & amp; Sons, (1999).
	Anton, H., Elementary Linear Algebra with Applications, 8th Edition, John Wiley & Sons, (1995).
2.	Textbook:

	➢ Veerarajan T., Engineering Mathematics for first year, Tata McGraw-
	Hill,New Delhi, 2008.
3	Journals & Periodicals
	\mathbf{A}
4	Other Electronic Resources
	\mathbf{A}

Evaluation Scheme	Total Marks	
Theory: Mid semester	20 marks	
Marks		
Theory: End Semester	40 marks	
Marks		
Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open Book Assignment	15 marks
	Article Review	10 marks
	Total	40 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	2	3	2
CO2	2	3	1
CO3	1	2	1
CO4	2	1	1
CO5	1	1	3
Avg.	2.8	1.2	1.6

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	0	0	1	0	0	1	0	1
CO2	3	2	1	2	2	0	0	1	0	1	0	0
CO3	3	2	2	2	1	0	0	1	1	1	0	3
CO4	3	2	3	3	0	0	0	1	0	1	0	2
CO5	2	1	0	0	0	1	1	0	1	1	0	1
Avg.	2.8	2	1.6	1.8	0.6	0.2	0.4	0.6	0.4	1	0	1.4

BTME209	ENGINEERING	SEMESTER
	MECHANICS	II

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	2	0	5	3	1	0	4

Course Pre-requisites	Basic knowledge of Physics and Mathematics
Course Category	Engineering Science Courses
Course focus	Employability
Rationale	The subject of Engineering Mechanics holds great importance as it provides the foundation for understanding the behavior of structures and machines, ensuring safety, efficiency, and innovation in engineering projects on local, national, and international scales.
Course Revision/ Approval Date:	06/07/2023
Course Objectives	To enable the student to:
(As per Blooms' Taxonomy)	 Apply systematic engineering synthesis and design processes Understand theory based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline.
	3: Understand theory based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline.
	4: Apply established engineering methods to complex engineering problem solving.
	5: Evaluate the beam related problems

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Rigid Body Statics	20%	09
Vector algebra, force systems, moment of a force about a point and about		
an axis; simplest equivalent forces and moment; free body diagram; force		
equilibrium, equations of equilibrium; problems in two dimensions. Types		
of loading, supports and reactions; evaluating internal forces in bodies; axial		
force, Planar Trusses and frames: static indeterminacy, analysis by method		

of joints and method of sections.		
Unit 2: Centre of Gravity	20%	09
Centroid of lines, plane areas and volumes, Examples related to centroid of		
composite geometry		
Unit 3: Moment of Inertia	20%	09
First and second moment of area and mass, radius of gyration, parallel axis		
theorem, product of inertia, rotation of axes and principal M.I., Thin plates,		
M.I. by direct method (integration), composite bodies.		
Unit 4: Friction	20%	09
Types and laws of friction, impending motion problems involving large and		
small contact surfaces.		
Unit 5: Dynamics	20%	09
Kinematics and Kinetics of particles: Particle dynamics in linear &		
rectangular coordinates cylindrical coordinates and in terms of path		
variables.		

List Of Practical	Weightage	Contact
		hours
1: Justify law of parallelogram of forces for a coplanar concurrent force	11.1 %	2
system in equilibrium.		
2: Justify law of polygon of forces for a coplanar concurrent force system	11.1 %	2
in equilibrium		
3: Calculate the magnitude and nature of forces in members of the jib-	11.1 %	2
crane.		
4: Verify Lemi's theorem.	11.1 %	2
5. Verify the principle of moment using bell crank lever.	11.1 %	2
6. Verify the support reactions and verify the condition of equilibrium for a	11.1 %	2
simply supported beam at ends.		
7. Calculate Mass moment of inertia of a fly wheel.	11.1 %	2
8. Determine the co-efficient of static friction between 1. glass and wood;	11.1 %	2
2. wood and cloth; and 3. wood and metal. (Horizontal surface)		
9. Determine the co-efficient of static friction between 1. glass and wood;	11.1 %	2
2. wood and cloth; and 3. wood and metal. (Inclined surface)		

Instructional Method and Pedagogy: The course can employ a combination of lectures, interactive demonstrations, hands-on problem-solving exercises, group discussions, and case studies. Utilizing visual aids, technology integration, and real-world applications enhances student engagement, critical thinking, and practical skills development in Engineering Mechanics.

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Understand and apply the principles of rigid body statics, including vector algebra, moment calculations, and equilibrium analysis, to solve problems in two and three dimensions.		Understand
CO2: Determine the centroid of lines, plane areas, and volumes, and apply the concept of centroid to solve problems involving composite geometries.	Cognitive	Understand
CO3: Calculate moments of inertia for various shapes and composite bodies, using the first and second moments of area and mass, and apply the parallel axis theorem and rotation of axes.		Apply
CO4: Apply the laws of friction to analyze problems involving impending motion, including those with large and small contact surfaces, as well as problems related to wedge friction.		Apply
CO5: Demonstrate an understanding of particle dynamics, including kinematics and kinetics, in rectangular coordinates, cylindrical coordinates, and in terms of path variables, and solve related problems.		Apply

Learning Re	sources
1.	Reference Books:
	➤ Beer, F.P., Johnston, E.R., Vector Mechanics for Engineers, Vol. 1 - Statics,
	Vol. 2, Dynamics, 9thEdition, Tata McGraw Hill, (2011).
	Meriam, J.L., Kraige, L.G., Engineering Mechanics, Vol. I Statics, Vol. 2
	Dynamics, 6thEdition, John Wiley, (2008).
	Timoshenko, S., Young, D.H., Engineering Mechanics, McGraw Hill Inc.,
	(1940).
	Shames, I.H., Rao, G.K.M., Engineering Mechanics – Statics and Dynamics,
	Pearson's Education, (2006).
	Desai and Mistry, "Engineering Mechanics", Popular Prakashan
	R. S. Khurmi, Engineering Mechanics S. Chand, New Delhi.
	D. S. Kumar, Engineering Mechanics S. K. Kataria & Sons, New Delhi
	Bhavikatti Mechanics of Solids, New Age publication
2	Journals & Periodicals

	Mechanics Based Design of Structures and Machines
	Materials & Design
	Engineering Structures
	Journal of Computational Design and Engineering
	Engineering with Computers.
3	Other Electronic Resources
	NPTEL Online Course- Engineering Mechanics, IIT Madras

Evaluation Scheme	Total Marks						
Theory: Mid semester Marks	20 marks						
Theory: End Semester Marks	40 marks						
Theory: Continuous							
Evaluation Component	Attendance	05 marks					
Widi KS	MCQs	10 marks					
	Open Book Assignment	15 marks					
	Article Review	10 marks					
	Total	40 Marks					
Practical Marks	Attendance	05 marks					
	Practical Exam	20 marks					
	Viva	10 marks					
	Journal	10 marks					
	Discipline	05 marks					
	Total	50 Marks					

Mapping of PSOs & COs

	PSO1	PSO2	PSO3		
CO1	2	3	2		
CO2	2	3	1		
CO3	1	2	1		
CO4	2	1	1		

CO5	1	1	3
Avg.	1.6	2	1.6

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	0	1	0	0	0	0	0	1	1	2
CO2	3	1	0	2	0	0	0	0	0	1	1	1
CO3	3	2	1	1	0	0	0	0	0	2	1	3
CO4	3	0	0	1	0	0	0	0	0	0	1	2
CO5	3	1	3	1	0	0	0	0	0	2	1	2
Avg.	3	1	0.8	1.2	0	0	0	0	0	1.2	1	2

BTCY205	ENGINEERING	SEMESTER
	CHEMISTRY	II

Teaching Scheme (Hours)				Teachin	g Credit		
Lecture	Practical	Tutorial	Total Hours	l Lecture Practical Tutoria		Tutorial	Total Credit
3	2	0	5	3	1	0	4

Course Pre-requisites	Basic knowledge of chemistry and Mathematics
Course Category	Core
Course focus	Employability
Rationale	
Course Revision/ Approval Date:	
Course Objectives	To enable the student to:
(As per Blooms' Taxonomy)	1: To understand hardness of water, its analysis and treatment along with its calculation.
	2: To understand various types of corrosion and its prevention techniques.
	3: To understand fuels, its analysis, combustion and calculation of calorific value.
	4: To apply knowledge of various types of lubricants and its property determination.
	5: To understand the instrumental techniques for chemical analysis.

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Water Technology	20%	15
Chemistry of water, Types of impurities in water, Types of hardness, Units of hardness, Estimation of hardness-EDTA method, Disadvantages of using hard water for industrial purpose. Scale and sludge formation in boiler, Caustic embrittlement-Priming and foaming. Softening of water: Ion exchange process, Lime soda process (with numerical's), Zeolite process Desalination. Reverse osmosis. Drinking water and its characteristics. Numericals to calculate hardness of water		
Unit 2: Corrosion, Control and Prevention	20%	10

20%	10
20%	10
20%	15
	20%

List Of Practical	Weightage	Contact
	10 5 04	nours
1. To estimate the amount of total hardness present in the given sample of	12.5 %	2
water by EDTA method.		
2. To Measure the pH value Of Given Solutions.	12.5 %	2
3. To determine alkalinity of given water sample.	12.5 %	2
4. To determine the acidity of the civer meter controls	125.04	2
4. To determine the actuary of the given water sample.	12.5 /0	Z
5. To measure a rate of corrosion of Iron in different medium	12.5 %	2
		2
6. To measure viscosity of a given sample.	12.5 %	2
		_
7. To determine flash point and fire point of a given sample.	12.5 %	2
8. To determine cloud point and pour point of a given sample	12.5 %	2

Instructional Method and Pedagogy: (Max. 100 words)

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: To understand hardness of water, its analysis and treatment along with its calculation.		Understand
CO2: To understand various types of corrosion and its prevention techniques.		Apply
CO3: To understand fuels, its analysis, combustion and calculation of calorific value.	Cognitive	Analyse Apply
CO4: To apply knowledge of various types of lubricants and its property determination.		
CO5: To understand the instrumental techniques for chemical analysis		Understand

Learning Re	sources
1.	Reference Books:
	➢ Wiley's Engineering Chemistry, Multiple Authors, Wiley International
	Engineering Chemistry, R. Gopalan
	▶ L. H. Van Vleck; Elements of Material Science and Engineering, Addison-Wesley
	Publishing Co.
2.	Textbook:
	Engineering Chemistry, P.C. Jain, Dhanpat Rai Pub. Co.
	Engineering Chemistry, S. S. Dara, S. Chand Pub. New Delhi
3	Journals & Periodicals
	 Journal of Chemical Technology, Environmental Science and Technology, Chemical Engineering Science, Energy and Fuels
4	Other Electronic Resources
	NPTEL Online Course.

Evaluation Scheme	Total Marks						
Theory: Mid semester Marks	20 marks						
Theory: End Semester Marks	40 marks						
Theory: Continuous Evaluation Component Marks	Attendance MCQs Open Book Assignment Article Review Total	05 marks 10 marks 15 marks 10 marks 40 Marks					
Practical Marks	Attendance Practical Exam Viva Journal Discipline Total	05 marks20 marks10 marks10 marks05 marks50 Marks					

	PS01	PS02	PS03
CO1	2	0	0
CO2	CO2 2 1		0
CO3	1	0	1
CO4	2	1	1
CO5	1	2	0
Avg.	1.6	0.8	0.4

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	0	0	0	0	1	0	1	0	0	0	1
CO2	1	2	2	0	0	1	0	1	0	0	0	1
CO3	1	2	0	0	0	1	1	1	0	0	0	0
CO4	1	2	2	0	0	1	0	0	1	0	0	0
CO5	1	0	2	0	0	0	0	0	0	0	1	1
Avg.	1	1.2	1.2	0	0	0.8	0.2	0.6	0.2	0	0.2	0.6

BTCS206	COMPUTER	SEMESTER
	PROGRAMMING-II	II

Teaching Scheme (Hours)				Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial			
0	2	0	2	0	1	0	1

Course Pre-requisites	Nil
Course Category	Engineering Science
Course focus	Employability
Rationale	
Course Revision/	26/4/2021
Approval Date:	
Course Objectives	To enable the student to:
(As per Blooms'	1: Identify /characterize/define a problem.
Taxonomy)	2: Design a program to solve the problem.
	3: Create executable code.
	4: Read most Python code and apply it.
	5: Apply knowledge of the subject to write basic unit tests.

List Of Practical	Weightage	Contact hours
1. Introduction	10%	2
2. git Hub, Functions, Booleans and Modules	10%	2
3. Sequences, Iteration and String Formatting	10%	2
4. Dictionaries, Sets, and Files	10%	2
5. Exceptions, Testing, Comprehensions	10%	2
6. Advanced Argument Passing, Lambda functions as objects	10%	2
7. Object Oriented Programming	10%	2
8. More OO Properties, Special methods	10%	2
9. Iterators, Iterables, and Generators	10%	2

10. Decorators, Context Managers, Regular Expressions, and Wrap Up	10%	2
--	-----	---

Instructional Method and Pedagogy: (Max. 100 words)

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
 CO 1: Identify/characterize/define a problem. CO 2: Design a program to solve the problem. CO 3: Create executable code. CO 4: Read most Python code and apply it. CO 5: Apply knowledge of the subject to write basic unit tests. 	Cognitive	Understand Create Create Understand Apply

Learning Re	sources
1.	Reference Books:
	\succ
2.	Textbook:
	Publication Head-First Python (2nd edition), Paul Barru, OREILLY
3	Journals & Periodicals
4	Other Electronic Resources
	The Python Tutorial — Python 3.8.2 documentationdocs.python.org > tutorial

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	-	
Theory: End Semester Marks	50 marks	
Practical Marks	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks

	PSO1	PSO2	PSO3
CO1	1	2	3
CO2	1	2	3
CO3	1	2	3
CO4	1	2	3
CO5	1	2	3
Avg.	1	2	3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	0	0	1	3	0	0	0	0	0	0	2
CO2	1	0	1	1	3	0	0	0	0	0	0	2
CO3	1	0	1	1	3	0	0	0	0	0	0	2
CO4	1	0	2	1	3	0	0	0	2	1	0	2
CO5	1	2	3	1	3	0	1	0	3	2	0	2
Avg.	1	0.4	1.4	1	3	0	0.2	0	1	0.6	0	2

BTME207	AUTOCAD	SEMESTER
		II

Teaching Scheme (Hours)					Teachin	g Credit		
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial Tot Cre				
0	2	0	2	0	1	0	1	

Course Pre-requisites	Nil					
Course Category	Engineering Science					
Course focus	Employability					
Rationale						
Course Revision/	24/06/2020					
Approval Date:						
Course Objectives	To enable the student to:					
(As per Blooms'	1: Understand the basic commands of Auto	CAD software				
Taxonomy)	2: Understand the concept of Computer AutoCAD software.	Aided Drafti	ng using			
	3: Apply basic concepts to develop c techniques	onstruction	(drawing)			
	4: Apply basic concepts of the AutoCAD software					
	5: Understand and demonstrate dimensitechniques	sioning conc	epts and			
Cour	Weightage	Contact				
Unit 1: Introduction to Auto	CAD	20%	6			
Starting with AutoCAD, Au drawing lines, circle, arcs, rec	toCAD dialog boxes, Co-ordinate Systems, ctangle, ellipse, polygons, etc. [Exercises]	_0,0	, j			
Unit 2: Editing sketched obj	jects	20%	6			
Editing sketches, moving, cop						
trimming, mirroring. Filleting	20%	6				
Geometric dimensioning and	2070	0				
Creating linear, rotated, angul						
dimensions.						
Unit 4: Plotting:		20%	6			
Plotting the drawings in Auto	CAD, plotting drawing using the plot dialog					
box, adding plotters and using plot styles, plotting sheets.						

Unit 5: Basics of 3D Modeling	20%	6
Generation of Primitive Solids, Boolean Operations, Region, Boundary		
Layer operations, Extrude, Subtract, Union, Explode, Exercises, Exercises		

List Of Practical	Weightage	Contact hours
1. Introduction to Auto CAD.	10%	2
2. Perform various editing operations in AutoCAD.	10%	2
3. Apply various dimensioning methods to a machine component in AutoCAD.	10%	2
4. Perform various plotting operations in AutoCAD.	10%	2
5. Perform 3D Modeling in AutoCAD	10%	2

Instructional Method and Pedagogy: (Max. 100 words)

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Understand the basic commands of AutoCAD software.		Understand
CO 2: Understand the concept of Computer Aided Drafting using AutoCAD software.	Cognitive	Create
CO 3: Apply basic concepts to develop construction (drawing) techniques		Create
CO 4: Apply basic concepts of the AutoCAD software		Apply
CO 5: Understand and demonstrate dimensioning concepts and techniques		Create

Learning Resources						
1.	Reference Books:					
	Finkelstein Ellen et. al., "AutoCAD 2012 and AutoCAD LT 2012 Bible" Wiley India, New Delhi					

2.	Textbook:
	Sham Tickooet. al., "AutoCAD 2012 for engineering and designers"cDream tech
	press, New Delhi
3	Journals & Periodicals
	Mechanics Based Design of Structures and Machines
	Engineering Structures
	 Journal of Computational Design and Engineering
	 Engineering with Computers
4	Other Electronic Resources
	https://www.udemy.com/topic/autocad/
	https://www.autodesk.com/training
	https://www.coursera.org/autodesk

Evaluation Scheme	Total Marks				
Theory: Mid semester Marks	-				
Theory: End Semester Marks	50 marks				
Practical Marks	Attendance Practical Exam	05 marks 20 marks			
	Viva	10 marks			
	Journal	10 marks			
	Discipline	05 marks			
	Total	50 Marks			

	PSO1	PSO2	PSO3
CO1	1	1	1
CO2	1	1	1
CO3	1	1	1
CO4	1	1	1
CO5	1	1	1
Avg.	1	1	1

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	0	0	0	0	0	0	0
CO2	3	3	3	3	2	0	0	0	0	0	0	0
CO3	3	2	3	3	2	0	0	0	0	0	0	0
CO4	3	1	3	3	3	0	0	0	0	0	0	0
CO5	3	2	2	3	2	0	0	0	0	0	0	0
Avg.	3	2	2.6	3	2.2	0	0	0	0	0	0	0

AECC201	COMMUNICATION	SEMESTER
	SKILLS IN ENGLISH	П

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
2	0	0	2	2	0	0	2

Course Pre-requisites	Basic English Grammar & Intermediate communication skills
Course Category	Ability Enhancement Compulsory Course
Course focus	Employability and Skill Development
Rationale	
Course Revision/ Approval Date:	18/01/2022
Course Objectives	To enable the student to:
(As per Blooms' Taxonomy)	1: To enable learners develop their basic communication skills in English.
	2: To make them understand with writing skills needed for academic as well as workplace context.
	3: To apply the subject knowledge for professional communication at world level.
	4: To create corporate communicational attitude in students.
	5: To apply digital communication using technological modules and expertise.

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Communicative Skills	20%	06
Basics of Communication, Verbal & Non-verbal Communication, Barriers		
to Effective Communication, Strategies of Effective Communication		
Unit 2: Grammar & Vocabulary	20%	06
Types of sentences, Synonyms, Antonyms, Tenses - Past, Present & Future,		
Homophones, Modals, Verb forms, Phrasal Verbs, Error correction,		
commonly misused words, technical term.		

Unit 3: Listening & Reading Skills	20%	06
Definitions (Listening & Reading), Types of Listening, Barriers to Effective		
Listening, Traits of a Good Listener, Types of Reading, Techniques of		
Effective Reading, Reading Tasks (Critical & Inferential).		
Unit 4: Writing Skills & Speaking Skills	20%	06
Letter writing - Complaint & Leave, Article, Precise writing, Report		
writing, Note taking and note making, Creative Writing Introducing self,		
Interview Skills, Public Speaking, Debates, Role plays, Group Discussion.		
Unit 5: ICT/ Digital/ E-Skills	20%	06
Computer Assisted Language Learning (CALL), Mobile Assisted Language		
Learning (MALL), Emails, Blogs, Digital/ E-Portfolio, Filling Online		
Application Forms		

Instructional Method and Pedagogy: (Max. 100 words)

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: To enable learners develop their basic communication skills in English.		Understand
2: To make them understand with writing skills needed for academic as well as workplace context.		Understand
3: To apply the subject knowledge for professional communication at world level.	Cognitive	Apply
4: To create corporate communicational attitude in students.		Create
5: To apply digital communication using technological modules and expertise.		Apply

Learning Re	sources
1.	Reference Books:

Chemical Engineering Course Curriculum Academic Year 2023-24

	▶ horpe, Edgar and Showick Thorpe "Basic Vocabulary" Pearson Education India.
	2012.
	Green, David, "Contemporary English Grammar Structures and Composition"
	MacMillan Publishers New Delhi 2010
	 Wren & Martin (2001). English Grammar & Composition. New York.
	Mudambadithaya G.S., (2002) English Grammar and composition.
	 Lupton, Mary Jane (1998), Maya Angelou: A Critical Companion, Westport:
	Greenwood Press ISBN 978-0-313-303225
	 Booher, Diana, (2004), Booher's Rules of Business Grammar, OUPUr, Penny.
	(2002), Grammar Practice Activities, OUP
2	Textbook.
۷.	T CALDOOK.
	Murphy, Raymond "Murphy's English Grammar with CD" Cambridge University
	Press, 2004
3	Journals & Periodicals
	The Journal' Pagia English Grammer
	Fine Journal Basic English Grammar
	Fluent U' English Language and Cultural Journal
	The Journal of English Academics'
	Elsevier' The research on language
	Index Noedicus : A Cumulative Index to English Language Periodicals
	The Illustrated English Language Periodicals
4	Other Electronic Resources
1	Wordsworth - Language software

Evaluation Scheme	Total Marks	
Theory: Mid semester	20 marks	
Marks		
Theory: End Semester	40 marks	
Marks		
Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open Book Assignment	15 marks
	Article Review	10 marks
	Total	40 Marks

	PSO1	PSO2	PSO3
CO1	1	1	1
CO2	1	1	1
CO3	1	1	1
CO4	1	1	1
CO5	1	1	1
Avg.	1	1	1

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	0	0	0	0	0	0	0
CO2	3	3	3	3	2	0	0	0	0	0	0	0
CO3	3	2	3	3	2	0	0	0	0	0	0	0
CO4	3	1	3	3	3	0	0	0	0	0	0	0
CO5	3	2	2	3	2	0	0	0	0	0	0	0
Avg.	3	2	2.6	3	2.2	0	0	0	0	0	0	0

COURSE CODE	COURSE NAME	SEMESTER
BTMA301	MATHEMATICS-III	III

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial Tot Cre			
3	0	1	4	3	0	1	4

Course Pre-requisites	Advance Mathematics
Course Category	Basic Sciences
Course focus	
Rationale	
Course Revision/	24-04-2017
Approval Date:	
Course Objectives	To enable the student to:
(As per Blooms' Taxonomy)	 Understand computations involving complex numbers. Understand the behavior of complex functions as compared to real functions. Study periodic functions and their representations as series. Introduce students to partial differential equations. Apply the concepts of Laplace and Fourier transforms.

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Complex Analysis	20%	10
Theory: Complex Analysis Complex number, polar form and triangle		
inequality. Function of a complex variable, Elementary functions,		
Definition and properties of analytics functions; Cauchy-Riemann		
equations.		
Unit 2: Complex Integration	20%	06
Theory: Cauchy's integral theorem and its applications.; Regular and		
irregular singular points, Residues and the Cauchy residue formula;		
Evaluation of improper integrals.		

and the second		
Unit 3: Partial Differential Equations	20%	10
First order partial differential equations, Formation of partial differential equations from given solutions, Four standard forms of non-linear first order equations. Application of first order partial differential equations: One dimensional Heat and Wave equation, Two-dimensional Heat equation.		
Unit 4: Fourier Series	20%	06
Theory: Fourier series, Half-ranged cosine and sine series.		
Unit 5: Laplace Transform	20%	13
Theory: Laplace and Inverse Laplace transforms, Shifting theorems,		
Convolution theorem, Laplace transform of Derivative and Integration,		
Solution of linear ODE's using Laplace transform. Initial and boundary		
value		

Instructional Method and Pedagogy: Chalk-Duster and Notes

Course Outcome:*	Blooms' Taxonomy Domain*	Blooms' Taxonomy Sub Domain*
After successful completion of the above course, students will be able to:		
CO1: Understand functions involving complex numbers.	complex numbers.	
CO2: Compute some real improper integrals using techniques of complex functions.	Cognitive	Evaluate
CO3: Expand one variable functions in Fourier series.		Create
CO4: Solve some most important partial differential equations occurring in engineering applications.		Apply
CO5: Select and combine the necessary Laplace transform techniques to solve second-order ordinary differential equations involving the Dirac delta (or unit impulse).		Apply

Learning Re	sources
1.	 Reference Books: Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill,New Delhi, 2008. Kreyszig, E., Advanced Engineering Mathematics, 8th Edition, John Wiley & Amp; Sons, (1999). Boyce, W.E., and DiPrima, R., Elementary Differential Equations, 8th Edition, John Wiley Sons, (2005).
2.	Journals & Periodicals:
3.	Other Electronic Resources:

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous	Attendance	05 marks
Marks	MCQs	10 marks
	Open Book Assignment	15 marks
	Article Review	10 marks
	Total	40 Marks

	PSO1	PSO2	PSO3
CO1	1	0	0
CO2	2	0	0
CO3	1	0	0
CO4	2	1	0
CO5	2	1	0
Avg.	1.6	0.4	0

Chemical Engineering Course Curriculum

Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	1	0	0	0	1	0	0	1	0	2
CO2	1	1	0	0	1	0	0	0	0	1	0	1
CO3	2	1	0	0	0	0	0	0	0	1	0	1
CO4	2	2	2	1	2	0	1	1	1	1	0	2
CO5	3	2	2	2	2	0	0	1	1	1	0	2
Avg.	1.8	1.6	1	0.6	1	0	0.4	0.4	0.4	1	0	1.6

COURSE CODE	COURSE NAME	SEMESTER
BTCH309	FLUID FLOW	III
	OPERATIONS	

Teaching Scheme (Hours)				Teachin	g Credit		
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial			
3	2	0	5	3	2	0	4

Course Pre-requisites	Mathematics I & II
Course Category	Professional Core
Course focus	
Rationale	
Course Revision/	24-04-2017
Approval Date:	21-03-2023
Course Objectives	To enable the student to:
(As per Blooms'	1: Impart fundamental knowledge in fluid flow phenomena.
Taxonomy)	2: Understand the basics equations of fluid flow phenomena.
	3: Introduce design of fluid transporting systems.
	4: Provide the clear understanding of pumps, blowers, compressors and fans.
	5: Introduce compressible fluid system.

Course Content (Theory)	Weightage	Contact hours
Unit 1: Introduction to Fluid Mechanics	20%	8
Introduction, concept of continuum, ideal & real fluids, properties of fluids. Fluid statics & its applications: manometers, pressure measurement devices, gravity decanters & Centrifugal decanters.		
Introduction to Fluid dynamics, concept of viscosity, classification of fluid streams, stream lines, average velocity, mass velocity, velocity field, velocity gradient etc. Rheology of fluids, Newtonian and Non- Newtonian fluids & Reynolds' experiment.		

 Unit 2: Basic Equations of Fluid Flow Introduction to basic equations of fluid flow, Bernoulli equation and its application. Reynolds number and its significance, Laminar & Turbulent flow, Concept of Boundary layer & thickness of boundary layer, wake & eddy formations, In- compressible flow in pipes & channels, Frictional losses in closed channels and pipe fittings, contraction & expansion losses, power requirement for flow. Friction factor – Hagen Poiseuille equation, friction loss in non-circular conduits, friction factor chart- Moody diagram. 	20%	8
Unit 3: Metering FluidsDevices & Introduction to CompressiblePipe, pipe- standards, fittings, pipe joints, optimum pipe size, valves, types ,constructional features, function ,steam traps & control valves. Pressure drop in pipe. The displacement and current meters, variable area meter, orifice meter, venturimeter, flow nozzles, rotameter, weirs and notches - Pitot tubes – velocity meters - anemometers, turbine flow meter, current meters, hot wire anemometer, laser doppler anemometry, flow visualization. Fans, Blowers, ejectors & compressors. Introduction to compressible flow through pipes and nozzles, isothermal, isentropic & adiabatic flow	20%	11
Unit 4: Fluidization Conditions for Fluidization, Types of fluidization, Geldart classification of particles. Minimum fluidization velocity, Pressure drop. Particulate and bubbling fluidization. Applications of fluidization. Slurry and pneumatic transport. Flows through packed bed-Ergun equation, terminal velocity.	20%	10
Unit 5: Agitation & Mixing Agitation & Mixing of liquids, Purpose of agitation, Different types of agitators and their selection & criteria impellers, propellers, flow number, power number dimensionless groups, power required calculation for agitation, Scale up of agitated vessel.	20%	8

Instructional Method and Pedagogy: Presentation, Videos, Chalk-Duster and Notes

List of Practical	Weightage	Contact hours
1: To study Reynolds Experiment to identify the type of flow	10	2
2: To measure the viscosity using Ostwald viscometer.	10	2
3. To study and verify Bernoulli Theorem	10	2
4. To find the minor losses in pipes.	10	2
5. To study friction through straight pipe.	10	2
6: To obtain the coefficient of discharge of Venturi meter.	10	2
7: To obtain the coefficient of discharge of Orifice meter.	10	2
8: To study the characteristics of centrifugal pump	10	2
9. To study local velocity using Pitot tube	10	2
10. To study friction through packed bed.	10	2

Course Outcome:*	Blooms' Taxonomy Domain*	Blooms' Taxonomy Sub Domain*
After successful completion of the above course, students will be able to:		
CO1: Understand the fundamentals of fluid flow phenomena.		Remember
CO2: Design of pipeline systems, Centrifugal pump and mixing systems.	Cognitive	Create
CO3: Knowledge of metering devices.		Apply
CO4: Knowledge of fluidization.		Understand
CO5: Knowledge of compressible systems.		Understand

Learning Re	sources
1.	 Reference Books: W. L. Mc Cabe, J. C. Smith, P. Harriot, "Unit Operations of Chemical Engineering", 7th Edition, McGraw Hill, (2006). J. M. Coulson & J. F. Richardson, "Chemical Engineering Vol. I", 6th Edition, Butterworth Heinemann Publications, (2004). G. S. Sawhney, 'Fundamentals of fluid mechanics', 2nd Edition, I. K. International.
2.	Journals & Periodicals:
3.	Other Electronic Resources:

Evaluation Scheme	Total Marks			
Theory: Mid semester Marks	20 marks			
Theory: End Semester Marks	40 marks			
Theory: Continuous	Attendance	05 marks		
Evaluation Component Marks	MCQs	10 marks		
	Open Book Assignment	15 marks		
	Article Review	10 marks		
	Total	40 Marks		
Practical Marks				
	Attendance	05 marks		
	Practical Exam	20 marks		
	Viva	10 marks		
	Journal	10 marks		
	Discipline	05 marks		
	Total	50 Marks		

	PSO1	PSO2	PSO3
CO1	2	0	0
CO2	2	2	1
CO3	03 2 2		1
CO4	1	1	0
CO5	1	1	0
Avg.	1.6	1.2	0.4

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO1
											1	2
CO1	2	0	0	0	0	1	1	1	0	0	0	1
CO2	2	2	2	1	0	0	0	1	1	0	0	1
CO3	2	2	1	1	1	1	0	0	0	0	0	1
CO4	2	0	1	0	1	0	0	1	0	0	0	0
CO5	2	0	1	0	1	0	0	1	0	0	0	0
Avg.	2	0.8	1	0.4	0.6	0.4	0.2	0.8	0.2	0	0	0.6

COURSE CODE	COURSE NAME	SEMESTER
BTCH303	APPLIED CHEMISTRY	III

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Lecture Practical		Total Hours	Lecture	Practical	Tutorial	Total Credit
4	2	0	6	4	2	0	5

Course Pre-requisites	Engineering Chemistry
Course Category	Professional Core
Course focus	24-04-2017
Rationale	
Course Revision/ Approval Date:	
Course Objectives	To enable the student to:
(As per Blooms' Taxonomy)	1: Familiarize students with little knowledge of nuclear science and its application.
	2: Impart sound knowledge in the different fields of physical chemistry.
	3: Study various analytical instruments to understand the characteristics of different materials.
	4: Develop analytical capabilities of students so that they can characterize, transform and use materials in engineering and apply knowledge gained in solving related engineering problems.
	5: Understand green chemistry and its importance in the field of chemical aspects.

Course Content (Theory)	Weightage	Contac t hours
Unit 1: : Surface chemistryAdsorption (physical and chemical adsorption),Adsorptionisotherms (Freundlich and Langmuir adsorption isotherm equations),	15%	10
BET isotherm (qualitative), Application in heterogeneous catalysis. Colloids: Classification of colloids, preparation, purification and properties of colloids, Action of soap, Industrial applications of colloidal systems.		

Winit 2: Electro Chemistry	15%	10
Introduction, half reaction, electrode potential, Nernst's equation, Electro chemical cell, type of electrodes, Reference electrodes, Faraday's Law of Electolysis, buffer solution, buffer capacity, Handerson-Hesselblatch equation for acidic and basic buffer with numerical.		
Unit 3 Inorganic Chemistry Common metal properties Radioactivity and Nuclear chemistry: Radioactivity, types of radiations, rate of radioactive decay, nuclear reactions, Fission and Fusion reactions, Nuclear reactors, Nuclear hazards and nuclear waste disposal. Catalysis: Homogeneous Lewis acid- base catalysts, organometallic catalysts and industrially examples. Heterogeneous catalysts basic concepts and industrial examples.	20%	12
Unit 4: Green chemistry Mechanisms and recent advances (green chemistry, catalysis, etc.) of following processes: Alkylation and acylation, e.g. alkylation of benzene, phenols, etc. Halogenation, e.g. chlorination of toluene Nitration and sulfonation, e.g. nitration, sulfonation of benzene, etc. Hydrogenation and reductive alkylations, e.g. hydrogenation of nitrobenzene, reductive alkylation reactions of anilines, etc. Oxidation, e.g. oxidation of xylenes, etc. Polymerization, e.g. polyethylene, polypropylene, polyester and nylon, etc.	30%	20
Unit 5: Analytical chemistry Statistical Aspects Molecular and atomic spectroscopy method. Thermal	20%	8
& Chromatographic methods.		

List of Practicals	Weightage %	Contact hours
1: To determine the adsorption isotherm of acetic acid by activated charcoal	9	2
2: Conductometric titration: Strong acid vs Strong base.	9	2
3. Conductometric titration: Strong acid vs weak base.	9	2
4. pH metric titration: Strong acid vs Strong base.	9	2
5, To study about effect of temperature on rate of reaction	9	2
6: To study about effect of concentration on rate of reaction.	9	2
7: Preparation of para nitro acetanilide from acetanilide	9	2

Chemical Engineering Course Curriculum Academic Year 2023-24

a)	8: Preparation	of pa	ara bromo	o acetanilide	from acetanilide.	9	2
	9. Preparation of	chrome a	alum.			9	2
	10 . To study abou	ut spectro	ophotomete	er.		9	2

Instructional Method and Pedagogy: Presentation, Videos, Chalk-Duster and Notes

Course Outcome:*	Blooms' Taxonomy Domain*	Blooms' Taxonomy Sub Domain*
After successful completion of the above course, students will be able to:		
COT: Understand the various aspects of physical chemistry		Remember
CO2: Learning about electrochemistry		Understand
CO3: Learn about nuclear chemistry, nuclear reactor and its application in various power generation field	Cognitive	Understand, apply
CO4: Understand about the green chemistry and the importance of it in various fields		Create
CO5: Learn the various analytical methods used to determine property and quality of the material		Analyse

Learning Re	sources
1.	 Reference Books: Essential of Physical Chemistry, B.S.Bahl, G.D. Tuli and Arun Bahl, S. Chand and Co. Ltd. Inorganic Chemistry, P. L. Soni, S. Chand & Sons Instrumental Methods of Analysis by Willard, Merritt and Dean EWP Principles of Physical Chemistry, B.R.Puri, L.R.Sharma and M.S.Pathnia, Vishal Pub. Co.
	- Instrumental Weblous of Amarysis, D. R. Sharma
2.	Journals & Periodicals: Asian Journal of green chemistry.
3.	Other Electronic Resources:

NPTEL courses

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous		
Evaluation Component	Attendance	05 marks
wiarks	MCQs	10 marks
	Open Book Assignment	15 marks
	Article Review	10 marks
	Total	40 Marks
Practical Marks		
	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	2	1	0
CO2	2	1	0
CO3	2	1	0
CO4	2	1	0
CO5	2	1	0
Avg.	2	1	0

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	1 and
	100
1000	15.00
CT DA	Willing .

Chemical Engineering **Course Curriculum** Academic Year 2023-24 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 CO2 CO3 CO4 CO5 1.8 1.6 0.6 0.4 0.4 0.4 1.6 Avg.

COURSE CODE	COURSE NAME	SEMESTER
BTCH304	PROCESS	III
	CALCULATIONS	

	Teaching Scl	Teaching Scheme (Hours) Teaching Credit					
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	0	1	4	3	0	1	4

Course Pre-requisites	None
Course Category	Professional Core
Course focus	
Rationale	
Course Revision/ Approval Date:	24-04-2017
Course Objectives	To enable the student to:
(As per Blooms' Taxonomy)	 Understand the Laws of Conservation of Mass and Energy. Understand the concept of Stoichiometry, Block Diagrams, Process Flow Diagrams and Piping & Instrumentation Diagrams.
	3: Carryout material balance of systems like single & multiple step processes, recycle, purge and bypass streams of different industries with or without chemical reactions.
	4: Do energy balance of different systems with and without chemical reactions.
	5: Apply the concept of material and energy balances in actual industrial operations.

Course Content (Theory)	Weightage	Contact hours
Unit 1: : Dimensions & Units	20%	7
Introduction to process calculation, Concept of Unit:		
Fundamental & Derived Dimensional consistency, Different ways of expressing units of quantities & physical constant, Unit conversion & its significance, Introduction to block diagram, PFD and P&ID		

and the second se		
Unit 2: Material Balance without chemical reaction	20%	10
Calculation of mole, molecular weight, equivalent weight etc., Composition of gaseous mixture, liquid mixture, solid mixture Material balance around equipment: Evaporator, Extractors, Distillation, Absorber, dryer, Mixing etc., Humidification, Use of Psychrometric charts and determination of humidity.		
Unit 3: Material Balance with chemical reaction & Recycle Operations	20%	10
Concept of limiting and excess reactant, Yield, Conversion, Selectivity etc., Material balance involving reactions with special reference to fertilizers, petrochemicals, combustion etc. Importance of Purge, Bypass and Recycle streams, Calculation based on purge, bypass & recycle stream in process		
Unit 4: Introduction to Energy Balance	20%	8
First law of thermodynamics and its application, Heat capacity of gases & gaseous mixtures, Heat capacity of liquids and solids, Equation of state		
Unit 5: Energy Balance	20%	10
Enthalpy changes accompanying chemical reaction: Heat of reaction, Heat of formation, Heat of combustion, Heat of mixing, Dissolution of solids etc. Various examples to calculate heat change with or without phase change. Enthalpy- concentration charts and its application, Adiabatic and non- adiabatic reaction, Theoretical and actual flame temperature.		

List of Tutorials	Weightage *	Contact hours*
1: Problems based on units & conversions in MS Excel/Scilab.	12	1
2: Problems based on calculation of mole, composition of mixture in MS Excel/Scilab.	12	1
3. Problems based on material balance without chemical reaction in MS Excel/Scilab.	13	1
4. Problems based on material balance with chemical reaction in MS Excel/Scilab.	13	1
5. Problems based on purge, bypass & recycle stream in MS Excel/Scilab.	12	1

6: Problems based on first law of thermodynamics and equation of state in MS Excel/Scilab.	12	1
7: Problems based on heat capacity of mixtures in MS Excel/Scilab	13	1
8: Problems based on enthalpy changes in MS Excel/Scilab.	13	1

Instructional Method and Pedagogy: Presentation, Videos, Chalk-Duster and Notes

Course Outcome:*	Blooms' Taxonomy Domain*	Blooms' Taxonomy Sub Domain*
After successful completion of the above course, students will be able to:		
CO1: To list different system of units and dimensions with conversion		Remember
CO2: Describe concepts for expressing compositions and behavior of different gases and solutions	Cognitive	Understand
CO3: sketch block diagrams of various chemical process and can solve material balance problems		Apply
CO4: Use fundamentals of thermodynamics and can solve energy balance problems.		Apply
CO5: Do material balance and examine and solve complex problems of industries related.		Evaluate

Learning Re	sources						
-							
1.	Reference Books:Stoichiometry", B.I. Bhatt, S. B. Thakore, McGraw Hill Education, 5th						
	 Edition, 2010. J. M. Coulson & J. F. Richardson, "Chemical Engineering Vol. I", 6th Edition, Butterworth Heinemann Publications, (2004). Basic Principles & Calculations in Chemical Engineering", David M. Himmelblau, James B. Riggs, PHI Learing Pvt. Ltd, 7th edition, 2006. Elementary Principles of Chemical Processes", Richard M. Felder, Ronald W. Rousseau, Wiley, 3rd Edition, 2004. 						
2.	Journals & Periodicals:						
	Journal of Chemical Education, ACS Publications.						

Journal of American Chemical Society, ACS Publications.

3.	Other Electronic Resources: NPTEL

Evaluation Scheme	Total Marks							
Theory: Mid semester Marks	20 marks							
Theory: End Semester Marks	40 marks							
Theory: Continuous Evaluation Component Morka	Attendance	05 marks						
Marks	MCQs	10 marks						
	Open Book Assignment	15 marks						
	Article Review	10 marks						
	Total	40 Marks						
Practical Marks								
	Attendance	05 marks						
	Practical Exam	20 marks						
	Viva	10 marks						
	Journal	10 marks						
	Discipline	05 marks						
	Total	50 Marks						

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	3	2	3
CO2	3	2	2
CO3	3	3	3
CO4	3	3	3
CO5	3	3	3
Avg.	3	2.6	2.8

Chemical Engineering Course Curriculum Academic Year 2023-24 Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	2	1	1	1	2	3	3	3
CO2	3	3	2	2	2	2	1	1	2	2	2	3
CO3	2	2	3	3	3	2	2	1	2	2	2	3
CO4	2	2	3	3	3	3	3	3	3	2	2	3
CO5	1	1	2	2	3	3	3	2	2	3	2	3
Avg.	2.2	2.2	2.4	2.2	2.6	2.2	2	1.6	2.2	2.4	2.2	3

COURSE CODE	COURSE NAME	SEMESTER
BTCH305	MECHANICAL	III
	OPERATIONS	

Teaching Scheme (Hours)				Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial To Cre			Total Credit
4	2	0	6	4	2	0	5

Course Pre-requisites	Mathematics I & II, Basics of Chemistry
Course Category	Professional Core
Course focus	
Rationale	
Course Revision/ Approval Date:	24-04-2017
Course Objectives	To enable the student to:
(As per Blooms' Taxonomy)	1: familiarize the student with characterization handling, storage of solids and screening
	2: familiarize the student with Principles of size reduction and size reduction equipment's
	3: familiarize the student with the methods of separations based on motion of a particle through fluids
	4: familiarize the student with filtration operation and industrial filters
	5: familiarize the student with the concept of fluidization and its applications

Course Content (Theory)		Contact
		hours
Unit 1: Solid particles and their flow properties		10
Characterization of solid particles and mixed particles (morphology and size distribution), particle size measurement techniques, specific surface of mixture, screen analysis of particles. Properties of masses of particles. Storage, conveyors and elevators Transportation and of solids including Pneumatic transport and hydraulic transport of solids and their safety aspects. Mixers for cohesive solids as well as for free flowing solids.		

Chemical Engineering Course Curriculum Aca	demic Yea	r 2023-24
Unit 2: Size reduction & size enlargement of solids Purpose and Principles of comminution, energy and power requirements in comminution, crushing efficiency, laws of comminution: Rittinger's law, Kick's law, Bond crushing law and work index. Types of size reduction equipments, Crushers: jaw crushers, gyratory crushers Grinders: hammer mills and impactors, tumbling mills, action in tumbling mills Ultrafine grinders: fluid energy mills. Cutting machines: knife cutters. Open-circuit and closed-circuit operation Size enlargement: by agglomeration, briquetting, compacting, granulation, tableting, etc.	20%	18
Unit 3: Particle size separation By Screening: screening equipment: stationary screens and grizzlies, gyrating screens, vibrating screens, comparison of ideal and actual screens, blinding of screen, screen efficiency, capacity and effectiveness of screens Numericals on efficiency of screen	20%	8
Unit 4: Separations based on motion of a particle through fluids Terminal settling velocity, settling under Stoke's law regime and Newton's law regime. Gravity settling processes, gravity classifiers, sorting classifiers, sink-and-float methods, differential settling methods, jigging, Wilfly table, elutriation, Cyclones, hydrocyclones, centrifugal decanters and froth flotation. Clarifiers and thickeners, construction and working of lamella clarifier, flocculation, batch sedimentation, rate of sedimentation. Equipment for sedimentation: thickeners. Sedimentation zones in continuous thickeners. Clarifier and thickener design, centrifugal sedimentation, Electrostatic & magnetic separation processes. Solid gas separation and Gas cleaning equipment: Bag filters, electrostatic precipitator, scrubbing & safety aspects of the equipment's.	20%	14
Unit 5: Filtration Types of filtration, principles of cake filtration, constant pressure, constant rate filtration, compressible and in- compressible cakes, filter media resistance and cake resistance, filter media, filter aids, filtration equipment's including belt filter(batch, continuous) and their selection criteria & safety aspects, Washing of filter cakes.	20%	10

List of Practicals	Weightage	Contact hours
1: Sieve analysis	12	2
2: Jaw crusher.	12	2
3. Roll crusher	13	2
4. Ball mill / Hammer mill	13	2

Academic Year	2023-24
---------------	---------

5. Settling and Sedimentation	12	2
6.Cyclone separator (Both series and parallel arrangements)	12	2
7. Froth Flotation	13	2
8: Filtration (Vacuum filtration, filter press)	13	2

Instructional Method and Pedagogy: Presentation, Videos, Chalk-Duster and Notes

Course Outcome:*	Blooms' Taxonomy Domain*	Blooms' Taxonomy Sub Domain*
After successful completion of the above course, students will be able to: CO1: Understanding of various fundamental operations, Transportation and properties of solid particles		Remember
CO2: Application of operations include size reduction, and enlargement.	Cognitive	Apply
CO3: Design aspects of screening device and its understanding of its types.	Coginare	Apply
CO4: Understanding of various separation operations and application of it.		Understand
CO5: Understanding of filtration operation and application of suitable filtration operation in process.		Apply

Learning Re	sources
1.	 Reference Books: W. L. Mc Cabe, J. C. Smith, P. Harriot, "Unit Operations of Chemical Engineering", 7th Edition, McGraw Hill, (2006). J.M. Coulson & J.F. Richardson 'Chemical Engineering' Vol 2, 6th Ed. Elsevier, (2003). G.G. Brown Ed. 'Unit Operations' John Wiley & Sons, (1950).
2.	Journals & Periodicals:
3.	Other Electronic Resources: NPTEL

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous Evaluation Component Marks	Attendance MCQs Open Book Assignment Article Review Total	05 marks 10 marks 15 marks 10 marks 40 Marks
Practical Marks	Attendance Practical Exam Viva Journal Discipline Total	05 marks20 marks10 marks10 marks05 marks50 Marks

	PSO1	PSO2	PSO3
	1501	1502	1505
CO1	2	1	1
CO2	2	2	0
CO3	2	2	0
CO4	2	1	0
CO5	2	1	0
Avg.	2	1.4	0.2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	1	0	1	1	1	1	0	1	1
CO2	2	1	1	1	0	1	1	1	0	0	0	1
CO3	1	2	3	1	1	1	1	1	1	0	1	1
CO4	1	0	1	0	0	1	1	1	0	0	0	0
CO5	1	0	1	0	0	1	1	1	0	0	0	0
Avg.	1.4	1	1.6	0.6	0.2	1	1	1	0.4	0	0.4	0.6

COURSE CODE	COURSE NAME	SEMESTER
AECC301	ENTREPRENEURSHIP	III
	DEVELOPMENT	

Teaching Scheme (Hours)				Teaching Credit				
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tu		Tutorial	Total Credit	
2	0	0	2	2	0	0	2	

Course Pre-requisites	Knowledge and skills of entrepreneurship
Course Category	Humanities and Social Sciences
Course focus	26-04-2021
Rationale	
Course Revision/ Approval Date:	
Course Objectives	To enable the student to:
(As per Blooms' Taxonomy)	1: Develop skills for evaluating, articulating, refining, and pitching a new product or service offering.
	2: Identify the elements of success of entrepreneurial ventures.
	3: Analyze Feasibility of the project (Financial and Non-Financial) and interpret business plan.
	4: Demonstrate and present successful work, collaboration and division of tasks in a multidisciplinary and multicultural team.
	5: Demonstrate understanding and application of the tools necessary to create sustainable and viable Businesses.

Course Content (Theory)	Weightage	Contact hours
Unit 1: Entrepreneurship Concept, knowledge and skills requirement; characteristic of successful entrepreneurs; role of entrepreneurship in economic development; entrepreneurship process; factors impacting emergence of entrepreneurship; managerial vs. entrepreneurial approach and emergence of entrepreneurship. Entrepreneurial Motivation.	20%	6

Chemical Engineering Course Curriculum Aca	demic Yeaı	r 2023-24
Thit 2: Starting the Venture	20%	6
Creativity and Entrepreneurship, Steps in Creativity; Product Design & Influencing Factors (Legal, Ethical & Environmental); Generating business idea –sources of new ideas, methods of generating ideas, creative problem solving, opportunity recognition; environmental scanning, competitor and industry analysis		
Unit 3: Feasibility Study (Non-financial Aspects)	20%	6
Market feasibility, Technical feasibility, operational feasibility, Legal feasibility, Human Resource Feasibility, Supply Feasibility.		
Unit 4 Feasibility Study (Financial Aspects)	20%	6
Cost classification- Fixed vs. Variable; Cost Determination- Material, Labour, Overheads; Product Profitability- Concepts of Break-even, Margin of Safety, Angle of Incidence, Key-factor, Profit-Volume ratio; Balance Sheet & Profit & Loss Account- Concepts & Structure; Budgeting; Financing Schemes from Government, specially schemes for women; Venture Capital & Angel Investing		
Unit 5 Detailed Project Report & Business Plan	20%	6
Project Report- components; Preparation of Business Plan; Pitching the Business Plan, Attracting Angel Investors. (A group of THREE students will prepare a DPR, and Business Plan on selected product or service in the course as a Project/Assignment)		

Instructional Method and Pedagogy: Presentation, Videos, Chalk-Duster and Notes

Course Outcome:*	Blooms' Taxonomy Domain*	Blooms' Taxonomy Sub Domain*
After successful completion of the above course, students will be able to:		
CO1: Develop skills for evaluating, articulating, refining, and pitching a new product or service offering.	Cognitive	Create
CO2: Analyze the elements of success of entrepreneurial ventures.	8	Anlayse
CO3: Analyze Feasibility of the project (Financial and Non- Financial) and interpret business plan.		Anlayse

1000		
ग्तेत श्	CO4: Develop present successful work, collaboration and	
	division of tasks in a multidisciplinary and multicultural	
	team.	Create
	CO5: understand the application of the tools necessary to create sustainable and viable Businesses.	Understand

Learning Re	sources
1.	Reference Books:
	• Holt DH. Entrepreneurship: New Venture Creation.
	• Kaplan JM Patterns of Entrepreneurship.
	• Gupta CB, Khanka SS. Entrepreneurship and Small Business Management,
	Sultan Chand & Sons.
2.	Journals & Periodicals:
	International Journal of Entrepreneurship.
3.	Other Electronic Resources:
	https://innovation-entrepreneurship.springeropen.com/

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous Evaluation Component Marks	AttendanceMCQsOpen Book AssignmentArticle ReviewTotal	05 marks 10 marks 15 marks 10 marks 40 Marks

Chemical Engineering Course Curriculum Academic Year 2023-24 Mapping of PSOs & COs

	PSO1	PSO2	PSO2
CO1	3	2	3
CO2	3	2	2
CO3	3	3	3
CO4	3	3	3
CO5	3	3	3
Avg.	3	2.6	2.8

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	2	1	1	1	2	3	3	3
CO2	3	3	2	2	2	2	1	1	2	2	2	3
CO3	2	2	3	3	3	2	2	1	2	2	2	3
CO4	2	2	3	3	3	3	3	3	3	2	2	3
CO5	1	1	2	2	3	3	3	2	2	3	2	3
Avg.	2.2	2.2	2.4	2.2	2.6	2.2	2	1.6	2.2	2.4	2.2	3

COURSE CODE	COURSE NAME	SEMESTER
BTCH401	Chemical engineering	IV
	Thermodynamics-I	

	Teaching Sch	neme (Hours)		Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial		Total Credit	
3	0	1	4	3	0	1	4

Course Pre-requisites	Basics of Science, Process Calculations
Course Category	Core
Course focus	Employability
Rationale	international relevance
Course Revision/ Approval Date:	14/4/2017
Course Objectives (As per Blooms' Taxonomy)	To understand the basic concepts of thermodynamics in chemical engineering so that students can solve chemical engineering problems.
	To analyse the energy balances for steady state and unsteady state processes.
	To examine the solve energy transformation problems
	To evaluate the thermodynamic properties of real gases using various PVT relationships and heat capacities data
	To apply knowledge of liquefaction and refrigeration using different power cycles

Course Content (Theory)	Weightage	Contact
		hours
Unit 1:	20%	7
Introduction of Thermodynamics & Basic Concept: Scope & limitation of		
thermodynamics, Definitions and fundamental concepts, Equilibrium state		
and phase rule, Temperature and zeroth law of thermodynamics, Heat		
reservoir and heat engine, Reversible and irreversible processes.		
Unit 2:	20%	8
First Law of Thermodynamics: The first law of thermodynamics, First Law		
of Thermodynamics for Cyclic Process, Internal Energy, First Law of		

Thermodynamics for Non-flow Process, Enthalpy, First Law of		
Thermodynamics for Flow Process, Heat capacity.		
Unit 3:	20%	10
PVT Behavior and Heat Effect: Process involving ideal gas, Equations for		
state of real gas, Compressibility chart, Standard heat of reaction, Standard		
heat of formation, Standard heat of combustion		
Unit 4:	20%	10
Second Law of Thermodynamics: Limitations of the first law of		
thermodynamics, General statement of second law of thermodynamics,		
Entropy, Carnot principle, Mathematical statement of second law of		
thermodynamics, Third law of thermodynamics.		
Unit 5:	20%	10
Applications of the Laws of Thermodynamics: Fundamental equations and		
relationships, flow in pipes, Flow through Nozzles, Ejectors, Throttling		
process, Compressors. Refrigeration: Coefficient of performance, Carnot		
refrigerator, Vapour compression cycle, Absorption refrigeration, Choice of		
refrigerant, Heat pumps. Power Generation Cycles: The Steam-Power		
Plant: Rankine cycle, reheat cycle, regenerative cycle, Internal combustion		
engines: Otto cycle, Diesel cycle, Gas-turbine Power Plant: Bravton Cycle		

List Of Practical Tutorial	Weightage	Contact hours
Unit 1: .	20%	4
 Problems based on work, pressure & energy in MS Excel/Scilab. Problems based on reversible & irreversible processes in MS Excel/Scilab. 		
Unit 2:	20%	4
 3. Problems based on the first law of thermodynamics on non-flow processes in MS Excel/Scilab. 4. Problems based on the first law of thermodynamics on flow processes in MS Excel/Scilab 		
Unit 3:	20%	6
5. Problems based on processes involving ideal gases in MS Excel/Scilab.6. Problems based on equations of state for real gas in MS Excel/Scilab.7. Problems based on heat effects accompanying chemical reactions in MS Excel/Scilab.		
Unit 4:	20%	4
 8. Problems based on Entropy in MSExcel/Scilab. 9. Problems based on the second law of thermodynamics in MS Excel/Scilab 		
Unit 5:	20%	2

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: To understand the basic concepts of thermodynamics in chemical engineering so that students can solve chemical engineering problems.	Cognitive	Understand,
CO2: To analyse the energy balances for steady state and unsteady state processes.		Analyse, Evaluate, Apply
CO3: To examine the solve energy transformation problems.		
CO4: To evaluate the thermodynamic properties of real gases using various PVT relationships and heat capacities data.		
CO5: To apply knowledge of liquefaction and refrigeration using different power cycles.		

Learning Re	sources
1.	Reference Books:
	Y. V. C. Rao, Chemical Engineering Thermodynamics, Universities Press (1997).
	B. G. Kyle 'Chemical Process Thermodynamics 3rd Ed., Prentice Hall India,
	(1994).
2.	Journals & Periodicals:
	The Journal of Chemical Thermodynamics, Elsevier
	Journal of Chemical Education, ACS Publications
3.	Other Electronic Resources:
	Chemical Engineering Thermodynamics, NPTEL

Evaluation Scheme	Total Marks

Theory: Mid semester	20 marks	
Marks		
	40 1	
Theory: End Semester	40 marks	
Marks		
Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks		10
	MCQs	10 marks
	Open Book Assignment	15 marks
	Open Rock Assignment	10 mortes
	Open book Assignment	10 marks
	Total	40 Marks

	PSO1	PSO2	PSO3
CO1	3	3	0
CO2	3	2	0
CO3	3	2	0
CO4	3	2	0
CO5	3	2	0
Avg.	3	2.2	0

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1	0	0	0	0	1	0	0	1
CO2	3	3	2	1	1	0	0	0	1	0	0	1
CO3	3	3	2	2	1	0	0	0	1	0	0	1
CO4	3	3	2	1	0	0	0	0	1	0	0	1
CO5	3	3	2	2	1	0	0	0	1	0	0	1
Avg.	3	3	1.8	1.4	0.6	0	0	0	1	0	0	1

COURSE CODE	COURSE NAME	SEMESTER
BTCH402	Heat Transfer Operations	IV

Teaching Scheme (Hours)		Teaching Credit					
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	2	1	5	3	2	1	5

Course Pre-requisites	Basics of Thermodynamics
Course Category	Core
Course focus	Employability
Rationale	international relevance
Course Revision/	14/4/2017
Approval Date:	
Course Objectives	To Understand practical importance of heat transfer in industries
(As per Blooms' Taxonomy)	Able to analyse applications of different heat exchanger in chemical industries.
	Apply heat transfer concepts with heat transfer equipment used in industries
	Students would be able to evaluate the problems in the engineering field related to chemical aspects.
	Apply different dimensionless numbers pertaining to heat transfer

Course Content (Theory)	Weightage	Contact
		hours
Unit 1:	25%	15
Heat Transfer Fundamentals: Modes of heat transfer; General laws of heat transfer Heat transfer by Conduction: Fourier's law, One dimensional steady state conduction, heat conduction through plane and composite walls, cylinders and spheres, critical radius of insulation for cylinder and sphere, overall heat transfer coefficient, heat transfer from extended surfaces, two and three dimensional problems, various types of thermal insulations, Unsteady state heat conduction		
Unit 2:	25%	15
Heat transfer by Convection: Theory: Fundamentals of convection - Newton's law of cooling, External & Internal Forced convection, Natural convection – physical mechanism, grashoff number and Rayleigh number,		

over surfaces, combined forced and free convection dimensional analysis, dimensionless numbers.		
Heat Transfer with phase change and its design aspects: Basics of Heat transfer with phase change – mechanism of pool & flow boiling, drop wise and film condensation in horizontal tubes, Nusselt's approach and its extension.		
Unit 3: Heat transfer by Radiation : Thermal radiation, Blackbody Radiation, Radiative Properties, View Factor	15%	9
Unit 4: Heat Exchangers: Types of heat exchangers, Analysis of heat exchangers, LMTD & NTU effectiveness method. Selection of heat exchangers.	17%	10
Unit 5: Evaporation: Types, classification, selection. Single effect and multiple effect evaporators, evaporator calculations. Energy conservation in evaporation. Vacuum evaporation	18%	11

List Of Practical	Weightage	Contact
Unit 1:	20%	4
1. Thermal conductivity of metal bar		
2. Thermal conductivity of composite wall		
Unit 2:	40%	8
3. Heat transfer in natural convection.		
4. Heat transfer in forced convection – laminar flow		
5. Heat transfer in forced convection – turbulent flow.		
6. Heat transfer in an agitated vessel		
Unit 3:	20%	4
7 Emissivity measurement apparatus		
8 Stefan-Boltzmann annaratus		
Unit 1.	20%	4
	40 /0	7
9. Shell and Tube heat exchanger.		
10. Finned tube heat exchanger.		

List Of Practical Tutorial	Weightage	Contact
		nours

Unit 1:	20%	3
1. Problems related to 1D,2D & 3D heat conduction equation through		
plane, cylinders & spheres.		
2. Problems related to composite walls, cylinders & spheres.		
3. Problems related to critical radius of insulation for cylinder & sphere.		
4. Problems related to fins.		
5. Problems related to unsteady state heat conduction.		
Unit 2:	20%	4
1. Problems related to convection		
2. problems related to internal forced convection		
3. problems related to external forced convection		
4. problems related to natural convection		
5. problems related to phase change, boiling & condensation.		
Unit 3:	20%	2
1.Problems related to thermal radiation & Blackbody. 2		
2. Problems related to radiative properties & view factor.		
Unit 4:	20%	2
1. Problems related to LMTD		
2. Problems related to NTU effectiveness method.		
Unit 5:	20%	4
1. Problems related to single effect evaporators		
2. Problems related to multiple effect evaporators		
3. problems related to evaporator calculation and energy conservations		

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to: CO1:To Understand practical importance of heat transfer in industries		
CO2: Able to analyse applications of different heat exchanger in chemical industries.	Cognitive	Understand, Analyse, Apply, Evaluate
equipment used in industries		

CO4: Students would be able to evaluate the problems in the engineering field related to chemical aspects.	
CO5:Apply different dimensionless numbers pertaining to heat transfer	

Learning Re	sources
1.	Reference Books:
	S. B. Thakore and B. I. Bhatt, Introduction to Process Engineering and Design, McGraw Hill Publication House, 2nd Edition.
	Y.V.C. Rao, HeatTransfer, 2nd Edition.
	J. M. Coulson & J. F. Richardson, Chemical Engineering, Vol.1, 6 th Edition, Elsevier.
	Yunus .A.Cengel, heat transfer – a practical approach, second edition
2.	Journals & Periodicals:
	International Journal of Heat and MassTransfer,
	Experimental Thermal and Fluid Science, Heat and Mass Transfer Research Journal CanSR
3.	Other Electronic Resources:
	NPTEL

Total Marks	
20 marks	
40 marks	
Attendance MCQs Open Book Assignment Open Book Assignment Tatal	05 marks 10 marks 15 marks 10 marks
	20 marks 40 marks 40 marks Attendance MCQs Open Book Assignment Open Book Assignment Total

Practical Marks		
	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks

	PSO1	PSO2	PSO3
CO1	2	1	1
CO2	2	2	0
CO3	2	2	0
CO4	2	1	0
CO5	2	1	0
Avg.	2	1.4	0.2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	1	0	1	1	1	1	0	1	1
CO2	2	1	1	1	0	1	1	1	0	0	0	1
CO3	1	2	3	1	1	1	1	1	1	0	1	1
CO4	1	0	1	0	0	1	1	1	0	0	0	0
CO5	1	0	1	0	0	1	1	1	0	0	0	0
Avg.	1.4	1	1.6	0.6	0.2	1	1	1	0.4	0	0.4	0.6

COURSE CODE	COURSE NAME	SEMESTER
BTCH403	Process Technology	IV

Teaching Scheme (Hours)			Teaching Credit				
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
4	2	0	6	4	2	0	5

Course Pre-requisites	Process Technology
Course Category	Core
Course focus	Employability
Rationale	international relevance
Course Revision/ Approval Date:	14/4/2017
Course Objectives	Knowledge of various production methods of most industrial chemicals
(As per Blooms' Taxonomy)	Understanding of process conditions and its effect on conversion.
	Understanding of economical balance and factors affecting it.
	Understanding of various problems associated with process and troubleshooting
	Understanding of suitable materials of construction for various types of process environment.

Course Content (Theory)	Weightage	Contact hours
Unit 1:	25%	15
Industrial Gases, Acids & Chlor-Alkali Industry Industrial gases: Manufacture, properties and uses of Hydrogen, Oxygen, nitrogen, Carbon dioxide, carbon monoxide and rare gases.		
Industrial Acids: Hydrochloric Acid manufacture by synthesis process, Sulfuric Acid & Oleum manufacturing processes, technologies, engineering problems, energy recovery, material construction piping & storage, DCDA process. Phosphoric Acid production processes/technologies by wet & electricfurnace, advantages & disadvantages, Nitric Acid engineering problems involved. Material of construction of piping etc.		
Chlor-alkali Industry: Manufacturing process of Caustic soda, Chlorine and engineering and design problems involved. Sodium Carbonate (Soda Ash): Manufacturing process/ technologies for sodium carbonate production, engineering problems limitations etc.		
Unit 2:	20%	10
Cement, Glass and Soap Industries Cement Industries: Introduction to cement industries, Types of cement, manufacture by wet process & dry process, engineering problems. Glass Industry: Types of glass, properties, special types of glass, preparation method batch & continuous method. Soap Industries: Types of soaps, Soap manufacture, recovery and purification		

Unit 3:	20%	10
Paper, Pulp, Fermentation Paper & Pulp Industry: Pulping techniques, Kraft process, black liquor recovery & major challenges in production via various methods. Fermentation Industry: Introduction to sugar manufacture and manufacture of Alcohol/ Ethanol & Methanol		
Unit 4:	10%	5
Paint & Dye Industry Paint Industry: Types of paint, constituents & its properties, PVC of		
Dye industry: Classification of Dyes. Dye intermediates manufacturing		
Unit 5:	25%	15
Fertilizer Industry Introduction to plant nutrients, micro-macro nutrients, types of		
fertilizers		
Nitrogen Fertilizers: Ammonia, Urea, ammonium sulphate – production, manufacture &		
storage, handling and uses ; Snamprogetti process for Urea production		
Phosphatic fertilizers: Raw materials, ground phosphate rock, single super phosphate, triple		
super phosphate, methods of production, characteristics and specifications. Potassium		
fertilizers: Potassium Chloride, Potassium nitrate, Potassium sulphate, – production,		
manufacture & storage, nandling and uses.		
Miscellaneous Fertilizer and Bio Fertilizers: Manufacturing of NPK, Ammonium Sulphate Deserbets (ASD), Coloium Ammonium Nitroto (CAN), Tupos of Dio fortilizers, Nitrogon		
Finisphate (ASF), Calcium Ammonium Initiate (CAN). Types of Dio fertilizers, Nitiogen-		
Enorgy factors offacting the industry solid liquid and gases waste released form the		
industry		
industry.		

List Of Practical	Weightage	Contact hours
Unit 1:	20%	2
1. To prepare nitrobenzene from benzene and determine the yield.		
Unit 2:	25%	4
 To determine the loss of igniting the cement sample. Preparation of soap by hot method and cold method. 		
Unit 4 :	30%	8
4. To determine Chemical Oxygen Demand (COD) of given effluent sample.5. Preparation of azo dye.6. Preparation of Indigo dye.		
Unit 4:	25%	2
7. To determine the amount of potassium in the given sample of fertilizer.8. Preparation of urea formaldehyde resin		

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Understanding of various production methods of most industrial chemicals		
CO2: Understanding of process conditions and its effect on conversion.	Cognitive	Understand
CO3: Understanding of economical balance and factors affecting it.		
CO4: Understanding of various problems associated with process and troubleshooting		
CO5: Understanding of suitable materials of construction for various types of process environment.		

Learning Reso	urces
1.	Reference Books:
	Shukla S. D. and G. N. Pandey, a Text Book of Chemical Technology, Vikas Publishing House, 1986.
	Kirk and Othmer, 'Encyclopedia of Chemical Technology', 5th Ed, 24 volumes, (2006)
	P. H. Groggins, "Unit Processes in Organic Synthesis", McGraw-Hill; Second Edition edition, 1938.
2.	Journals & Periodicals:
3.	Other Electronic Resources:
	NPTEL

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous		
Evaluation Component Marks	Attendance	05 marks
	MCQs	10 marks
	Open Book Assignment	15 marks
	Open Book Assignment	10 marks
	Total	40 Marks
		1

Practical Marks		
	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks

	PSO1	PSO2	PSO3
CO1	2	0	0
CO2	2	2	0
CO3	2	1	0
CO4	2	2	0
CO5	2	1	0
Avg.	2	1.2	0

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping	of POs	& COs
---------	--------	-------

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	0	0	0	1	1	1	1	1	0	1
CO2	2	3	2	0	1	1	1	0	0	0	1	1
CO3	1	1	2	1	1	0	0	1	1	0	0	0
CO4	1	3	2	3	1	1	1	1	0	0	1	1
CO5	1	2	1	0	0	1	1	0	0	0	0	0
Avg.	1.4	2	1.4	0.8	0.6	0.8	0.8	0.6	0.4	0.2	0.4	0.6

COURSE CODE	COURSE NAME	SEMESTER
BTCH404	NUMERICAL METHODS IN	IV
	ENGINEERING	

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
2	2	0	4	2	2	0	3

Course Pre-requisites	Numerical Methods
Course Category	Core
Course focus	Employability
Rationale	international relevance
Course Revision/ Approval Date:	14/4/2017
Course Objectives	Demonstrate understanding of common numerical methods and how they are
(As per Blooms' Taxonomy)	used to obtain approximate solutions to otherwise intractable mathematical problems.
	Apply numerical methods to obtain approximate solutions to mathematical problems.
	Analyse and evaluate the accuracy of common numerical methods.
	Apply numerical methods in Matlab
	Apply efficient, well-documented Matlab code and present numerical results in an informative way.

Course Content (Theory)	Weightage	Contact hours
Unit 1:	20%	5
Solution Algebraic and Transcendental Equations: Bisection, False position, Newton Raphson Method, Secant Method.		
Unit 2:	20%	6
Solution of system of Linear Equations: Gauss Elimination method, LU decomposition method, Gauss Seidel method. Interpolation: Newton's forward and backward interpolation		
Unit 3:	20%	7
Newton's divided difference interpolating polynomials, Lagrange Interpolating polynomials. Numerical Differentiation: First and second order differentiation Equations of Equally Spaced Data. Solution using Matlab. Numerical Integration: Trapezoidal rule, Simpson's one third and 3/8th rule. Solution using Matlab.		

Unit 4:	20%	6
Numerical methods for Solution of ordinary differential equation: Taylor's series method, Euler's method, Modified Euler's method, Runge Kutta forth ordered method, Milne's Predictor Corrector Method. Solution using Matlab.		
Unit 5:	20%	6
Finite element method to solve second order ODE. Curve Fittings: General Linear Least Squares, Fitting of quadratic and exponential curves. Solution using Matlab.		

List Of Practical	Weightage	Contact hours
Unit 1: .	20%	4
Matlab Introduction and Programs of Bisection, False position, Newton Raphson Method, Secant Method		
Unit 2:	20%	4
Matrices in Matlab and Solution of System of linear equations in Matlab, Eigen Value and eigen vectors using Matlab. Programs of Difference Table, newtons forward and Backward Interpolations.		
Unit 3:	20%	4
Matlab Programs of Newton's divided difference interpolation		
Unit 4:	20%	4
Matlab Programing of Lagrange's Interpolation, Trapezoidal rule, Simpson's one third and 3/8th rule. Curve plot and Graphs in Matlab		
Unit 5:	20%	4
Curve fitting in Matlab		

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to: CO1: Demonstrate understanding of common numerical methods and how they are used to obtain approximate solutions to otherwise intractable mathematical problems.		
CO2: Apply numerical methods to obtain approximate solutions to mathematical problems.CO3: Analyse and evaluate the accuracy of common numerical methods.	Cognitive	Understand, Apply, Analyse
CO4: Apply numerical methods in Matlab		

CO5: Apply efficient, well-documented Matlab code and present numerical results in an informative way.

Learning Reso	urces
1.	Reference Books:
	Grewal. B.S., and Grewal. J.S., " Numerical Methods in Engineering and Science " 9th Edition,
	Khanna Publishers, New Delhi, 2007.
2.	Journals & Periodicals:
3.	Other Electronic Resources:
	NPTEL

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous		
Evaluation Component Marks	Attendance	05 marks
	MCQs	10 marks
	Open Book Assignment	15 marks
	Open Book Assignment	10 marks
	Total	40 Marks
Practical Marks		
	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks

	PSO1	PSO2	PSO3
CO1	2	2	2
CO2	3	2	2
CO3	2	1	2
CO4	3	2	2
CO5	3	2	2
Avg.	2.6	1.8	2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	2	2	0	1	1	1	1	0	2
CO2	2	3	1	0	0	0	0	1	0	1	0	2
CO3	3	2	0	2	3	0	1	2	1	0	0	2
CO4	3	2	0	0	3	0	0	0	2	1	0	2
CO5	2	0	0	1	3	1	1	2	2	1	0	2
Avg.	2.4	1.8	0.4	1	2.2	0.2	0.6	1.2	1.2	0.8	0	2

COURSE CODE	COURSE NAME	SEMESTER
BTCH405	MATERIAL SCIENCE &	IV
	ENGINEERING	

Teaching Scheme (Hours)			Teaching Credit				
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	0	0	3	3	0	0	3

Course Pre-requisites	Basics of Science
Course Category	Core
Course focus	Employability
Rationale	international relevance
Course Revision/ Approval Date:	14/4/2017
Course Objectives	Understanding of various NDT techniques
(As per Blooms' Taxonomy)	Apply microstructures of ferrous – nonferrous metals.
	Analyse different corrosion control techniques.
	Evaluate different material testing methods
	Understanding of different composite materials.

Course Content (Theory)	Weightage	Contact hours
Unit 1:	20%	10
Classification of Engineering materials, Introduction to levels of internal structure like macro, micro, crystal and atomic and correlated properties, Characterization Methods/Tools to reveal the different level of structure.		
Unit 2:	20%	15
Steady & Non steady diffusions, Stress-Strain, Elastic and plastic deformations, Slip systems, strengthening, mechanisms, Phases, microstructure, phase equilibria, Fe-Fe3C phase diagram. Reaction of iron carbon system Mechanical behaviour of Fe-C alloys and alloys. Mechanical testing and standards: testing methods, tensile, impact, hardness, fracture, toughness & fatigue. NDT examination – Ultrasonic, magnetic particle, Dye penetration inspection & Radiography		
Unit 3:	20%	6
Introduction of alloys and their importance in industry. Properties of Ferrous & Non Ferrous alloys, Uses of various grades of stainless steels are to be explained from corrosion point of view, high temperature requirements, etc.		
Unit 4:	20%	6

Corrosion, control & mitigation of metals & alloys. Material selection and design consideration, materials and industrial design, material property charts, material selection, strategy and procedure		
Unit 5:	20%	8
Introduction to Composite and Ceramic material, Molecular weight, Molecular configurations of polymers, Mechanisms of deformation and strengthening in polymers, glass transition economic, environmental and societal issues related to engineering materials; case studies related to few engineering products/equipmen		

Instructional Method and Pedagogy:	Chalk-board. Power point presentation
instructional information and i caugogy	enant coura, i on er point presentation

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain	
After successful completion of the above course, students will be able to:			
CO1: Understanding of various NDT techniques			
CO2: Apply microstructures of ferrous – nonferrous metals.			
CO3: Analyse different corrosion control techniques.	Cognitive	Understand, Apply,	
CO4: Evaluate different material testing methods		Evaluate	
CO5: Understanding of different composite materials.			

Learning Reso	urces
1.	Reference Books:
	Materials Science and Engineering, by William Smith, Javed Hashmi and Ravi Prakash. McGraw Hill Education, (2013).
	V. Raghavan, "Material Science and Engineering – A First Course by. Prentice Hall of India, (2004).
	UHLIG'S corrosion handbook, 3rd edition, John Wiley & SonsInc.
	Mechanical Metallurgy by George E Dieter. McGraw Hill Education, (1986).
	A K Bhargava and C P Sharma, "Mechanical Behaviour and Testing of Materials". Prentice Hall of India, (2011)
2.	Journals & Periodicals:
3.	Other Electronic Resources:
	NPTEL

Evaluation Scheme	Total Marks			
Theory: Mid semester Marks	20 marks			
Theory: End Semester Marks	40 marks			
Theory: Continuous Evaluation				
Component Marks	Attendance	05 marks		
	MCQs	10 marks		
	Open Book Assignment	15 marks		
	Open Book Assignment	10 marks		
	Total	40 Marks		
		I		

	PSO1	PSO2	PSO3
CO1	2	2	1
CO2	1	1	1
CO3	2	2	1
CO4	3	3	1
CO5	3	1	1
Avg.	2.2	1.8	1

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	0	1	3	1	3	1	0	0	0	1
CO2	1	2	2	1	0	0	0	0	0	0	0	0
CO3	3	3	1	3	3	3	3	0	1	1	2	1
CO4	2	2	1	3	3	2	2	1	0	1	2	0
CO5	2	1	2	1	0	3	1	0	0	0	0	1
Avg.	1.8	2.2	1.2	1.8	1.8	1.8	1.8	0.4	0.2	0.4	0.8	0.6

COURSE CODE	COURSE NAME	SEMESTER
BTCH408	INDUSTRIAL POLLUTION	IV
	CONTROL	

Teaching Scheme (Hours)			Teaching Credit				
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
2	0	0	2	2	0	0	2

Course Pre-requisites	Basics of Science
Course Category	Core
Course focus	Employability
Rationale	
Course Revision/ Approval	14/4/2017
Date:	21/03/2023
Course Objectives	Analyze the characteristics of solid waste and its handling &
(As per Blooms'	management.
Taxonomy)	Understand and select the design of air pollution control devices.
	Design of suitable treatment for wastewater.
	Apply the abatement technologies in industries in the near future.
	Apply applications of controlling technology in their particular field.

Course Content (Theory)	Weightage	Contact hours
Unit 1: Introduction Introduction Types of emissions from Chemical industries and Effects of environment. Type of pollution and their sources. Effluent guidelines and	10%	2
standards, Importance of industrial pollution abatement, Concept of sustainable development, Greenhouse gases, Global warming and climate change		
Unit 2: Environment regulatory legislations Introduction to the water (Pollution and control of pollution) Act, 1974, The air (Pollution and control of pollution) Act, 1981, The environmental (Protection) Act, 1986	10%	1
Unit 3: Water Pollution and abatement Techniques	30%	12

Sources and characteristics of pollutants in fertilizer, paper and pulp industry, petroleum and petroleum industry, Pollution laws and limits.		
Methods of secondary treatment: Suspended growth processes v/s Attached growth processes, Rotary drum filters.		
Methods of tertiary treatment: Brief studies of Carbon absorption, Ultra filtration, Chlorination, Ozonation.		
Unit 4: Air Pollution and control	25%	8
Air pollutants, Preventive and Controlling mechanism of Air Pollutants.		
Introduction and application of Gravity settler, cyclone separator,		
Electrostatic Precipitator, Scrubber		
Unit 5: Solid Waste Management	25%	7
Analysis and quantification of hazardous and non-hazardous wastes,		
Treatment and disposal of solid wastes (Bio-medical Waste, Industrial Solid		
Waste: Dyes & Pigment, Pharmacy, Glass & Ceramics, Rubber, Polymer,		
Nuclear Power Plant, Energy Industries etc.)		

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Analyze the characteristics of solid waste and its handling & management.		
CO2: Understand and select the design of air pollution control devices.	Cognitive	Understand,
CO3: Design of suitable treatment for wastewater.		Apply, Analyze, Design
CO4: Apply the abatement technologies in industries in the near future.		
CO5: Apply applications of controlling technology in their particular field.		

Learning Re	Learning Resources				
1.	Reference Books: Masters, G.M., Introduction to Environmental Engineering and Science, Prentice Hall				
	 > De Nevers, N., Air Pollution Control Engineering, McGraw-Hill (2000). 				

	➤ J.R. Welty, R.W. Wilson, and C.W.Wicks, Rorer G.E, Wilson R.W. "Fundamentals of Momentum Heat and Mass Transfer", V Edn. John Wiley, New York, 2007.
2.	Journals & Periodicals:
	Journal of Industrial Pollution Control
3.	Other Electronic Resources:
	NPTEL

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous		
Evaluation Component	Attendance	05 marks
	MCQs	10 marks
	Open Book Assignment	15 marks
	Open Book Assignment	10 marks
	Total	40 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	2	0	0
CO2	2	1	1
CO3	2	2	2
CO4	3	3	1
CO5	3	3	1
Avg.	2.4	1.8	1

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	0	1	0	1	3	3	2	3	0	1
CO2	1	1	2	0	0	1	2	2	3	3	0	1
CO3	3	2	1	0	2	1	1	2	3	3	2	3
CO4	3	3	3	2	1	3	2	3	3	3	3	2
CO5	3	3	3	2	1	3	2	3	3	3	3	2
Avg.	2.4	2.2	1.8	1	0.8	1.8	2	2.6	2.8	3	1.6	1.8

COURSE CODE	COURSE NAME	SEMESTER
AECC401	ENVIRONMENTAL	IV
	STUDIES	

Teaching S	Scheme (Hou	ırs)		Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
2	0	0	2	2	0	0	2

Course Pre-requisites	Basics of Science		
Course Category	Ability Enhanced Compulsory Course		
Course focus	Employability		
Rationale			
Course Revision/ Approval Date:	14/4/2017		
Course Objectives	Remember: To acquire an awareness of and sensitivity to the total		
(As per Blooms'	environment and its allied problems.		
Taxonomy)	Apply: To make educated judgments about environmental issues.		
	Create: Develop skills and a commitment to act independently and collectively to environment sustainability		
	Apply & Analysis: Students can able to debate environmental science with use of appropriate scientific information		
	Apply & Understand : Engaging with students of all disciplines to think critically, ethically, and creatively when evaluating environmental issues.		

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Introduction	20%	2
Introduction of Ecology Ecology-Objectives and Classification Concepts of		
an ecosystem-structure & function of ecosystem components of ecosystem,		
Hydrological cycle, carbon cycle, oxygen cycle, Nitrogen cycle, Sulphur		
cycle		
Unit 2: Ecological Pyramids	20%	1
Ecological pyramids of various ecosystems Forest Ecosystem, Grassland		

Ecosystem, Desert Ecosystem, Aquatic ecosystem, Estuarine Ecosystem.		
Unit 3: Air Pollution and control	20%	12
Introduction, Classification of air pollutants, air pollutants and their		
effects, acid rain, photochemical smog, particulates. Characteristics and		
biochemical effects of some important air pollutants, Effect of air		
pollutants on man and environment, Air quality standard, air monitoring		
and control of air pollution.		
Unit 4: Water Pollution and control	20%	8
Introduction, Classification of water pollutants, physical, chemical and		
biological characteristics of waste water, wastewater treatment: Primary		
treatment- Sedimentation, coagulation, equalization, neutralization,		
secondary treatment-aerobic treatment-aerated lagoons, trickling filter,		
activated sludge process, oxidation ditch process, oxidation pond,		
anaerobic treatment-anaerobic sludge digestion, sludge treatment and		
disposal and tertiary treatment-evaporation, ion exchange, adsorption,		
chemical precipitation, Electrodialysis, reverse osmosis.		
Unit 5: Solid and Hazardous Waste	20%	7
Introduction, Classification and origin, characteristics of solid wastes,		
objectives and considerations in solid waste management, methods of		
solid waste treatment and disposal - composting, land filling, thermal		
processes-incineration, pyrolysis, recycling and reuse of solid waste-co-		
disposal, bioconversion.		

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Remember: To acquire an awareness of and sensitivity to the total environment and its allied problems.		
CO2: Apply : To make educated judgments about environmental issues.	Cognitive	Understand,
CO3: Create: Develop skills and a commitment to act independently and collectively to environment sustainability		Apply, Analyze, Remember, Create
CO4: Apply & Analysis: Students can able to debate environmental science with use of appropriate scientific information		
CO5: Apply & Understand: Engaging with students of all disciplines to think critically, ethically, and creatively when evaluating environmental issues.		

Aarning N	
	Text Books:
	≻Fundamental concepts in Environmental studies by DD Mishra, S. Chance Publishing, India
	➤ Cell Biology, Genetics, Molecular Biology, Evolution and Ecology by PS Verma and VK Agarwal, S. Chand Publication, India
	► Fundamentals of Ecology by PD Sharma, Rastogi Publications
	► Ecology and Environment by PD Sharma, Rastogi Publications
	➤ Environmental Chemistry by BK Sharma, GOEL Publishing house
	➤ Textbook of Environmental Studies, by E. Bharucha, UGC universities Press
	≻ Environmental Studies by R. Rajagopalan, Oxford University Press
	➤ Environmental Pollution and Control by JF Peirce, RF Weiner, and PA Vesilind Elsevier Science & Technology Book
	≻ Ecology by Mohan P. Arora, Hmalaya Publishing House
	➤ Fundamentals of Ecology by M.C. Dash
	Reference Books:
	Fundamentals of Ecology by EP Odum Cengage
	➢ Big Questions in Ecology & Evolution by TN Sherratt & DM Wilkinson, Oxford
	➤ Ecology: Experimental Analysis of Distribution & Abudance by CJ Krebs, Pearson Education, London
	➤ Concept of Ecology by EJ Kormondy, Pearson Education, London
	 ➤ Conservation Biology: Voices from the Tropics. Bys Sodhi, N.S., Gibson, L. & Raven, P.H. (eds) John Wiley & Sons
	➢ Plastic and Environment by RE Hester and RM Harrison, Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB- 0WF, UK
	➤ Environmental Education and Ecotourism by Fernando Ramírez and Josefin Santana, Springer Nature Switzerland AG
	➢ Reclamation of Arid lands by Mohammad Jafari, Ali Tavili, Fatemeh Panah Ehsan Zandi Esfahan and Majid Ghorbani, Springer International Publishin Switzerland

	➤ Emerging Issues in Ecology and Environmental Science, Case studies from India by T. Jindal, Springer Nature Switzerland
	 Environmental Water Footprints Concepts and Case Studies from the Food Sector
	by SS Muthu, Springer Nature Singapore
2.	Journals & Periodicals:
	≻Environmental Pollutants and Bioavailability
	≻ Clean Air Journal
	≻Emerging Contaminants
	► Environment: Science and Policy for Sustainable Development
	► Annual Review of Environment and Resources
	≻ Renewable Energy
	➤ Renewable & Sustainable Energy Reviews
	► Environmental Health
	► Environment International
	► International Journal of Environmental Research and Public Health
	≻The Environmental Magazine
	➤ Natural History (magazine)
	► Environment News Service
	➤ The Environmentalist
	≻ Green Builder Media
3.	Other Electronic Resources:
	≻Green.tv—supported by UNEP—broadband TV channel for films about environmental issues
	➤ Climate Change TV—funded by companies, governments and organisations, and produced by the magazine Responding to Climate Change—the world's first web channel specific to climate change videos
	➤ Terra: The Nature of Our World video podcast produced in conjunction with the Master of Fine Arts program in Science & Natural History Filmmaking at Montana State University, Filmmakers for Conservation, and PBS—weekly video show about science and natural history

➤ Green Times Ahead—based in India—student run non-profit with a focus on evading the detrimental effects of air and water pollution, constantly involved in communal engagement

≻ IUCN Red data List

➤ Air quality index

➤ Nature Education Knowledge Project.

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous		
Evaluation Component Marks	Attendance	05 marks
	MCQs	10 marks
	Open Book Assignment	15 marks
	Open Book Assignment	10 marks
	Total	40 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	2	0	0
CO2	2	1	1
CO3	2	2	2
CO4	3	3	1
CO5	3	3	1
Avg.	2.4	1.8	1

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	0	1	0	1	3	3	2	3	0	1
CO2	1	1	2	0	0	1	2	2	3	3	0	1
CO3	3	2	1	0	2	1	2	2	3	3	2	3
CO4	3	3	3	2	1	3	2	3	3	3	3	2
CO5	3	3	3	2	1	3	2	3	3	3	3	2
Avg.	2.6	2.2	1.8	1	0.8	1.8	2.2	2.6	2.8	3	1.6	1.8

BTCH501	MASS TRANSFER	SEMESTER
	OPERATIONS - I	V

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
4	2	0	6	4	1	-	5

Course Pre-requisites	Fluid Flow Operations, Heat Transfer Operations
Course Category	Core
Course focus	Employability
Rationale	
Course Revision/	24/06/2020
Approval Date:	
Course Objectives	To enable the student:
(As per Blooms'	1: To understand the basic principles of mass transfer operations.
Taxonomy)	2: To understand the equilibria for various systems.
	3: To learn various types of equipment for gas liquid operations.
	4: To learn concepts of Gas absorption and Distillation.
	5. To learn design calculations of absorber and distillation columns used in industries.

Course Content (Theory)	Weightag	Contac
	e	t hours
Unit 1: Mass Transfer Fundamentals and Molecular Diffusion	20%	12
Molecular and eddy diffusion (in gases, liquids, biological solutions, and		
gels), Fick's law of diffusion. Steady state diffusion in fluid, Measurement		
of diffusivity by Stephen tube, Various mass transfer co relationship, Mass-		
heat momentum transfer analogies, unsteady state diffusion		
Unit 2: Interphase Mass Transfer & Equipment for Mass Transfer	20%	12
Operations		
Interphase mass transfer: Equilibrium, concept of local and overall mass		
transfer coefficients and their relationship, Material balances application to		
gas-liquid and liquid-liquid systems.		
Equipment for gas-liquid operations: Equipment for gas-liquid		
operation, their classification and selection criteria. Gas Dispersed: Bubble		
columns, Mechanically Agitated vessels, Tray Towers etc. Liquid		
Dispersed: Venturi scrubbers, wetted-wall towers, spray towers, packed		

towers, etc.		
Unit 3: Gas absorption Mechanism of gas absorption, equilibrium solubility of gases in liquids, concept of ideal and non-ideal solution, choice of solvent for absorption, calculation of HETP, HTU, NTU, calculation of height of tower, types of packing, modeling of plate column and packed column.	20%	12
Unit 4: Distillation- Basic concept and single stage distillation Vapour-liquid equilibria for ideal and non-ideal systems, positive and negative deviations from ideality, relative volatility,Raoult's law, enthalpy concentration diagrams, Flash and simple distillation, vacuum distillation, Batch and steam distillation, types of reboiler.	20%	12
Unit 5: Distillation- Fractional distillation and basic design Fractional distillation, infinite, minimum and optimum reflux ratio, multicomponent distillation, azeotropic distillation, extractive distillation, concept of reflux, distillation methods (McCabe Thiele and Ponchon Savarit methods) to find out number of theoretical stages.	20%	12

List of Practical	Weightage	Contact hours
1: Diffusivity of vapour in air	14.28%	2
2: Mass Transfer coefficient in Wetted wall column	14.28%	2
3: Gas absorption in a packed column.	14.28%	2
4: Mass transfer with and without chemical reaction.	14.28%	2
5: VLE experiments.	14.28%	2
6. Simple Distillation	14.28%	2
7. Distillation in a packed column.	14.28%	2

Instructional Method and Pedagogy: Chalk-board, PowerPoint presentation

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		

CO1: Understand practical importance of mass transfer in industries.		Understand
CO2: Able to identify applications of different separation techniques in chemical industries	Cognitive	Analyse
CO3: Learn designing of mass transfer equipment used in industries.		Apply
CO4: Learn equilibrium conditions for various systems.		Understand
CO5: Learn importance of Distillation and Gas absorption in industry.		Understand

Learning Reso	urces
1.	Reference Books:
	1. W.L. McCabe, J. Smith and P. Harriot, Unit Operations of Chemical Engineering, 7th Edition, Tata McGraw Hill.
	 B. K. Dutta, Principles of Mass Transfer and Separation Processes, 2nd edition, Prentice Hall of India, 2007.
	 Seader, Henley, Roper, 'Separation Process Principles', 3rd edition, John Wiley and Sons.
	4. Lyle Albright, 'Albright's Chemical Engineering Handbook', CRC Press.
	 N.Ananthraman, K.M. Meera Begum, 'Mass Transfer- Theory and Practice', PHI Publications
2.	Textbook:
	R. E. Treybal, Mass Transfer Operations, 3rd Edition, McGraw Hill.

Evaluation Scheme	Total Marks	
Theory: Mid semester	20 marks	
Marks		
Theory: End Semester	40 marks	
Marks		
Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open Book Assignment	15 marks
	Article Review	10 marks
	Total	40 Marks

Practical Marks		
Atte	endance	05 marks
Prac	ctical Exam	20 marks
Viv	a	10 marks
Jour	rnal	10 marks
Dise	cipline	05 marks
Tot	al	50 Marks

	PSO1	PSO2	PSO3
CO1	3	1	0
CO2	3	1	0
CO3	3	2	0
CO4	3	1	0
CO5	3	1	0
Avg.	3	1.2	0

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1	1	0	0	0	1	1	0	1
CO2	2	1	1	1	1	0	0	0	1	1	0	1
CO3	2	2	3	1	1	0	0	0	1	1	0	1
CO4	2	1	1	1	1	0	0	0	1	1	0	1
CO5	2	1	1	1	1	0	0	0	1	1	0	1
Avg.	2.2	1.2	1.6	1	1	0	0	0	1	1	0	1

BTCH502	Chemical Reaction	SEMESTER
	Engineering-I	V

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Lecture Practical Tutorial		Total Credit
3	2	1	6	3	1	1	5

Course Pre-requisites	Applied Chemistry, Mathematics
Course Category	Core
Course focus	Employability
Rationale	
Course Revision/	24/06/2020
Approval Date:	
Course Objectives	To enable the student:
(As per Blooms' Taxonomy)	1: To learn concepts of kinetics and mechanism of homogeneous reactions
	2: To design ideal reactors for single reaction including heat effects
	3: To understand the importance of multiple reactor systems.
	4: To understand the temperature and pressure effect on reactor design.
	5: To analyse non-ideal flow behaviour in reactors.

Course Content (Theory)	Weightag	Contac
	e	t hours
Unit 1: Kinetics of homogeneous reaction Introduction to Chemical Reaction Engineering, Classification of reactions, Rate of reaction with its various forms and various factors affecting the rate of reaction. Kinetics of homogeneous reaction Classification of reactions, Concept of Rate of reaction. Molecularity and order of reaction, Rate constant. Temperature dependency and concentration dependency of the reaction rate.	20%	09
Unit 2: Interpretation of batch reactor data Constant volume batch reactor, analytical method to find rate equation, Variable volume batch reactor. Ideal reactor for single reaction: batch, CSTR and PFR.	20%	09
Unit 3: Design for single and multiple reactions:	20%	09

Design for single reactions Size comparison of single reactors, multiple reactor systems, recycle reactor and autocatalytic reactions. Multiple reactions: Design for parallel reactions Introduction to multiple reactions, qualitative and quantitative treatment of product distribution and of reactor size, the selectivity.		
Unit 4: Design of series reactions, Temperature and pressure	20%	09
effect		
Design for series reactions		
Quantitative and qualitative treatments for plug flow or batch reactor and		
mixed flow reactor, their performance characteristics, kinetic studies and		
design for maximizing the desired product, successive irreversible reactions		
of different orders, reversible reactions, irreversible series parallel		
reactions.		
Effect of Temperature and pressure in reaction engineering		
Heats of reaction and equilibrium constants from thermodynamics,		
equilibrium conversion, general graphical design procedure. Optimum		
temperature progression, Evaluation of adiabatic and nonadiabatic reactor		
performance. Thermal stability of reactors.		
Unit 5: Distillation- Fractional distillation and basic design	20%	09
RTD and various techniques to find it, The E, F and C Curves, their		
interrelationship, conversion in non-ideal flow reactors, Zero parameter and		
One parameter models for non-ideal reactors.		

List of Practical	Weightag	Contac
	e	t hours
1: Determination of Activation energy for reaction between Sodium thiosulfate and HCl	12.5%	2
2: Isothermal Batch Reactor	12.5%	2
3: Isothermal CSTR and PFR	12.5%	2
4: CSTR in series	12.5%	2
5. RTD studies in plug flow tubular reactors (coiled tube type)	12.5%	2
6. RTD in CSTR	12.5%	2
7. RTD studies in PFR followed by CSTR	12.5%	2
8. RTD in packed bed reactor	12.5%	2

List of Practical Tutorial	Weightag	Contac
	e	t hours
Unit 1: Kinetics of homogeneous reaction.	20%	3
Unit 2: Interpretation of batch reactor data.	20%	3
Unit 3: Design for single and multiple reactions.	20%	3

School of Technology, GSFC University

Unit 4: Design of series reactions, Temperature and pressure effect.	20%	3
Unit 5: Distillation- Fractional distillation and basic design.	20%	3

Instructional Method and Pedagogy: Chalk board, PowerPoint presentation

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Understand kinetics of reactions and their influence on product yield and selectivity.		Remember
CO2: Ability to perform the kinetic analysis for designing ideal reactors.	Cognitive	Understanding
CO3: Analyse the size and performance on isothermal plug, mixed, and batch.		Analyse
CO4: Apply the concept for designing a non-isothermal reactor.		Apply
CO5: Learn the non-ideality in the reactors.		Evaluate

Learning Re	sources
1.	Reference Books:
	 H. Scott Fogler 'Elements of Chemical Reaction Engineering', 5th Edition, Prentice Hall India, (2015).
	2. Hougen O.A., Watson K. M., and Ragatz R.A., 'Chemical Process
	Principles', Part III, John Wiley, USA.
	 L Schmidt, 'The Engineering of Chemical Reactions', 2nd Edition, Oxford, (2008).
	4. J. M. Smith, 'Chemical Engineering Kinetics', McGraw-Hill, USA.
	5. Lyle Albright, 'Albright's Chemical Engineering Handbook', CRC Press.
2.	Textbook:
	O. Levenspiel "Chemical Reaction Engineering", 3rd Edition, John Wiley & Sons.

Chemical Engineering Course Curriculum Academic Year 2023-24

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous		
Evaluation Component	Attendance	05 marks
Ivial KS	MCQs	10 marks
	Open Book Assignment	15 marks
	Article Review	10 marks
	Total	40 Marks
Practical Marks		
	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks

Mapping of PSOs & COs

	PSO1	PSO2	PSO3
CO1	2	1	2
CO2	3	2	1
CO3	3	2	1
CO4	3	2	1
CO5	3	2	1
Avg.	3	1.8	1.2

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1	1	1	0	0	1	0	0	1
CO2	3	3	3	2	2	0	0	0	1	0	0	1
CO3	3	3	3	2	2	0	0	0	1	0	0	1
CO4	3	3	3	2	1	0	0	0	1	0	0	1
CO5	3	3	3	2	1	0	0	0	1	0	0	1
Avg.	3	2.8	2.8	1.8	1.4	0	0	0	1	0	0	1

BTCH503 CHEMICAL ENGINEERING SEMESTER V THERMODYNAMICS - II

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	0	1	4	3	-	1	4

Course Pre-requisites	Chemical Engineering Thermodynamics – I, Engineering
	Mathematics I, II, III
Course Category	Core
Course focus	
Rationale	
Course Revision/ Approval Date:	24/06/2020
Course Objectives	To enable the student:
(As per Blooms' Taxonomy)	1: Understand the concept of estimating thermodynamic properties from the network of equations
	2: Understand the partial molar properties of components in a particular phase, and apply to calculations of heat of mixing, volume, and entropy changes on processing of ideal and real mixtures.
	3: Understand chemical reaction equilibrium and various parameters affecting it.
	4: Understand the fundamentals of phase equilibria and estimating VLE data for various systems.
	5. Understand the LLE for binary systems using LLE diagrams and the concept of SLE.

Course Content (Theory)	Weightag	Contac
	e	t hours
Unit 1: Thermodynamic Properties of Pure Fluid	20%	09
Classification of thermodynamic properties, Gibbs free energy,		
Relationship among thermodynamic properties, fugacity and activity.		
Unit 2: Properties of Solutions	22.2%	10
Partial molar properties, Chemical potential, fugacity in solution, activity		
and activity coefficient, Gibbs Duhem equation, property changes of		

mixing.		
Unit 3: Chemical Reaction Equilibria Criteria for chemical reaction equilibrium, Le-Chatelier's Principle, Equilibrium constant, Effect of temperature on equilibrium, Effect of pressure on equilibrium constant and composition, Effect of inert.	26.6%	12
Unit 4: Phase Equilibria & Vapour – Liquid Equilibria (VLE) Criteria for phase equilibrium, Phase equilibria in single and multi- component system, Phase rule for non-reacting system, Vapour-liquid equilibria, constant temperature and pressure equilibria, Vapour-liquid equilibria in ideal solution, Azeotropes, Vapour-liquid equilibria at low and high pressure, Dew point and bubble point equilibria, Vapour-liquid equilibria for a system of limited miscibility.	26.6%	12
Unit 5: Liquid – Liquid Equilibria (LLE) & Solid – Liquid Equilibria (SLE) Binary liquid–liquid equilibria, Ternary diagrams, Introduction to solid – liquid equilibria.	4.4%	02

Instructional Method and Pedagogy: Chalk-board, PowerPoint presentation

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Understand the concept of estimating thermodynamic properties from the network of equations.		Understand
CO2: Estimation and learning the impact of properties/partial properties affecting the solutions.		Evaluate
CO3: Understand chemical reaction equilibrium and various parameters affecting it.	Cognitive	Apply
CO4: Understand the fundamentals of phase equilibria and estimating VLE data for various systems.		Evaluate
CO5: Understand the LLE for binary systems using LLE diagrams and the concept of SLE.		Understand

Chemical Engineering Course Curriculum Academic Year 2023-24

Learning Re	esources
1.	Reference Books:
	 J. M. Smith, H. C. Van Ness & M. M. Abbot, "Introduction to Chemical Engineering Thermodynamics", McGraw Hill, (2004). Y. V. C. Rao, "Chemical Engineering Thermodynamics", Universities Press (1997). P. K. Nag, "Engineering thermodynamics", Tata McGraw-Hill Education, (2005). B. G. Kyle, "Chemical Process Thermodynamics", Prentice Hall India, (1994). S. R. Turns, "Thermodynamics concepts and applications", Cambridge University Press, (2006).
2.	Textbook:
	K. V. Narayan, "A Textbook of Chemical Engineering Thermodynamics", 2nd Ed., Prentice Hall India Learning Private Limited; (2013)
3	Journals & Periodicals
	1. The Journal of Chemical Thermodynamics, Elsevier.
	2. Journal of Chemical Education, ACS Publications
4	Other Electronic Resources
	Chemical Engineering Thermodynamics, NPTEL Online Course.

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous Evaluation Component Marks	Attendance MCQs	05 marks 10 marks
	Open Book Assignment	15 marks
	Total	40 Marks

	PSO1	PSO2	PSO3
CO1	3	2	0
CO2	3	2	0
CO3	3	1	0
CO4	3	2	0
CO5	3	2	0
Avg.	3	1.8	0

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	2	2	0	2	0	0	2
CO2	3	2	2	3	2	1	2	0	2	0	0	2
CO3	3	2	2	3	2	1	2	0	1	0	0	1
CO4	3	3	2	2	2	1	2	0	2	0	0	2
CO5	3	3	2	2	2	2	2	0	1	0	0	2
Avg.	3	2.6	2	2.4	2	1.4	2	0	1.6	0	0	1.8

BTCH504	INSTRUMENTATION &	SEMESTER
	PROCESS CONTROL	V

Teaching Scheme (Hours)				Teachin	g Credit		
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
4	2	0	6	4	1	0	5

Course Pre-requisites	Mathematics I,II,III, Numerical Methods in Engineering,
	Process Calculation
Course Category	Core
Course focus	Skill Development
Rationale	
Course Revision/	24/06/2020
Approval Date:	
Course Objectives	To enable the student:
(As per Blooms' Taxonomy)	1: Understanding the fundamentals of process control and tools for establishing it for a process.
	2: Developing the transfer functions for establishing a mathematical model for a system in which process control can be implied.
	3: To introduce the fundamentals of process control with applications using P, PI, and PID controllers.
	4: Understanding the frequency response of stability criteria required for a process control in a system.
	5. Understanding the importance of process control instrumentation and their applications in chemical industries.

Course Content (Theory)	Weightag	Contac
	e	t hours
Unit 1: Modeling for Process Dynamics	16.6%	10
Introduction to process control, process dynamics, mathematical tools for		
modeling (ODE, PDE, Laplace transform.)		
Unit 2: Linear Open – Loop Systems	25%	15
Response of first order systems, examples of first order systems,		
linearization. Interacting and non – interacting systems. Second order		
systems, transportation lag.		

Unit 3: Linear Closed – Loop Systems Control system, final control element and its mechanisms, controller and their mechanisms. Overall transfer function for single – loop and multi – loop systems. Servo problem, regulatory problem, transient response of control systems, stability and stability criteria.	25%	15
Unit 4: Frequency Response Introduction to frequency response, frequency response analysis, Nyquist stability criteria, Bode's stability criteria, gain margin, phase margin.	16.6%	10
Unit 5: Instrumentation Introduction to measurement, basic measurement devices and working principles for level, flow, pressure and temperature. Instrumentation symbols and labels. Types of control valves.	16.6%	10

List of Practical	Weightag	Contac
	e	t hours
1: Air pressure trainer.	16.6%	2
2: Flow control trainer.	16.6%	2
3: Level control trainer.	16.6%	2
4: Heat exchanger temperature control trainer.	16.6%	2
5. Control valve characteristics.	16.6%	2
6. Cascade control trainer.	16.6%	2

Instructional Method and Pedagogy: Chalk-board, PowerPoint presentation

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: To enhance basic knowledge of process control mechanisms.		Understand
CO2: To describe the transfer functions for the control system for various unit operations and processes (reactor, distillation column, etc.).	Cognitive	Understand
CO3: Students are able to interpret the overall transfer function for a process and test its stability.		Apply/Analyse
CO4: Select such a controller to reduce error in short times and stabilise the system in short time.		Evaluate

CO5: Understand working principles of basic various	
instruments available for flow, pressure, level and	Domombor
temperature measurement.	Kemember

Learning Re	sources
1.	Reference Books:
	 Seborg, Edgar, Mellichamp, Doyle, "Process Dynamics & Control", 3rd Edition, John Wiley & Sons, Inc. G. Stephanopoulos, "Chemical process control: An introduction to theory and practice", Prentice Hall of India Private Limited. R.P. Vyas, "Process control and instrumentation", 7th Edition, Denett & Co. Publication. R.P. Vyas, "Measurement and control", Denett & Co. Publication. Donald P. Eckman, "Industrial instrumentation", 1st Edition, CBS. William L. Luyben, "Process modeling, simulation and control for chemical engineers", McGraw Hill International Editions. D. C. Sikdar, "Instrumentation and Process Control", Khanna Publishers.
2.	Textbook:
	D. R. Coughanowr, "Process system analysis and control", 3rd Edition, McGraw Hill Publication.
3	Journals & Periodicals
	 Journal of Process Control, Elsevier. Industrial and Engineering Chemistry, ACS Publications.
4	Other Electronic Resources
	 Process Control and Instrumentation, NPTEL Online Course. Process Control - Design, Analysis and Assessment, NPTEL Online Course. Chemical Process Control, NPTEL Online Course.

Evaluation Scheme	Total Marks
Theory: Mid semester Marks	20 marks
Theory: End Semester Marks	40 marks

Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open Book Assignment	15 marks
	Article Review	10 marks
	Total	40 Marks
Practical Marks		
	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks

	PSO1	PSO2	PSO3
CO1	3	2	0
CO2	3	2	0
CO3	3	1	0
CO4	3	2	0
CO5	3	2	0
Avg.	3	1.8	0

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	2	2	0	2	0	0	2
CO2	3	2	2	3	2	1	2	0	2	0	0	2
CO3	3	2	2	3	2	1	2	0	1	0	0	1
CO4	3	3	2	2	2	1	2	0	2	0	0	2
CO5	3	3	2	2	2	2	2	0	1	0	0	2
Avg.	3	2.6	2	2.4	2	1.4	2	0	1.6	0	0	1.8

AECC501	Disaster Risk Management	SEMESTER
		V

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
2	0	0	2	2	0	0	2

Course Pre-requisites	Nil
Course Category	Ability Enhancement Compulsory Course
Course focus	Employability and Skill Development
Rationale	
Course Revision/ Approval Date:	24/06/2020
Course Objectives	To enable the student:
(As per Blooms' Taxonomy)	 To introduce inter-relationship between disaster and development. To introduce types of disasters with case studies and create awareness. To study the effective use of science for mitigating disasters To study case studies of various famous disasters. To introduce various disaster management frameworks and strategies adopted at national and international levels.

Course Content (Theory)	Weightag	Contac
	e	t hours
Unit 1: Introduction to Disasters	20%	06
Understanding the Concepts and Definitions of Disaster, Hazard,		
Vulnerability Risk, Capacity Disaster and Development, and Disaster		
Management Fundamental of Disasters-Types, Trends, Causes,		
Consequences and Control: Geological Disasters, Hydro-Meteorological		
Disasters, Biological Disasters, Technological Disasters, and Man-made		
Disasters. Global Disaster Trends – Emerging Risks of Disasters – Climate		
Change and Urban Disasters.		
Unit 2: Disaster Management Cycle and Framework	20%	06
Disaster Management Cycle – Paradigm Shift in Disaster Management,		
Pre-Disaster – Risk Assessment and Analysis, Risk Mapping, Zonation,		
Micro zonation, Prevention and Mitigation of Disasters, Early Warning		
System, Preparedness, Capacity Development; Awareness, During Disaster		
–Evacuation – Disaster Communication – Search and Rescue,		
Emergency Operation Centre- Incident Command System -Relief And		

Rehabilitation. Post -disaster Damage and Needs Assessment, Restoration of Critical Infrastructure – Early Recovery – Reconstruction and Redevelopment; IDNDR, Yokohama Strategy, Hyogo Framework of Action, Sendai framework.		
Unit 3: Disaster Management in India Disaster Profile of India Mega Disasters of India and Lessons Learnt, Disaster, Management Act 2005 – Institutional and Financial Mechanism, National Policy on Disaster Management, National Guidelines and Plans on Disaster Management; Role of Government (local, state and national), Non-Government and Intergovernmental Agencies. Disaster Management Act in relation to COVID 19 Pandemic.	20%	06
Unit 4: Role of Science and Technology in Disaster Management Geo-informatics in Disaster Management (RS, GIS, GPS and RS), Disaster Communication System (Early Warning and Its Dissemination), Land, Planning and Development Regulations, Disaster Safe Designs and Constructions, Structural and Non-Structural Mitigation of Disasters, S&T Institutions for Disaster Management in India.	20%	06
Unit 5: Disaster Case Studies Various Case Studies on Disaster and Development, Disaster Prevention and Control, Risk Analysis and Management. Case study relating to COVID 19 to be explored	20%	06

Instructional Method and Pedagogy: Chalk-board and PowerPoint presentation

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: Remember terminologies and concept of disasters		Remember
CO2: Understand framework and concept of disaster management cycle		Understand
CO3: Understand guidelines and policies of disaster	Cognitive	
management in India		Understand
CO4: Understand role of science and technology in disaster		Understand
management		Evaluate
CO5: Evaluate various disaster case studies		

Learning Re	sources
1.	Reference Books:
	 Goyal, S.L., Encyclopedia of Disaster Management (Vols. 1-3), Deep & Deeep, New Delhi Gupta, A.K., Nair, S.S., Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi. Ibrahimbegovic, A., Zlatar, M., Damage Assessment and Reconstruction after War or Natural Disaster, Springer. Menshikov, V.A., Perminov, A.N., Urlichich, Y.M., Global Aerospace Monitoring and Disaster
	 Modh, S., Introduction to Disaster Management, Macmillian Publishers India. Srivastava, H.N., Gupta, G.D., Management of Natural Disasters in Developing Countries, Daya Publishers, NIDM AND NIDMA publications.
2.	Textbook:
	 Alexander, D., Natural Disasters, Kluwer Academic London. Asthana, N. C., Asthana P., Disaster Management, Aavishkar Publishers. Carter, N., Disaster Management: A Disaster Manager's Handbook, Asian Development Bank. Collins, A.E., Disaster and Development, Routledge. Coppola, D.P., Introduction to International Disaster Management, 2nd Edition, Elsevier Science.
3	Journals & Periodicals
	GSDMJ, disaster management act
4	Other Electronic Resources
	GIDM, NIDM

Evaluation Scheme	Total Marks
Theory: Mid semester Marks	20 marks
Theory: End Semester Marks	40 marks

Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Article review	10 marks
	Open book	15 marks
	Total	40 Marks

	PSO1	PSO2	PSO3
CO1	3	2	1
CO2	2	1	1
CO3	2	1	1
CO4	2	2	0
CO5	2	2	1
Avg.	2.2	1.6	0.8

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	0	0	1	2	1	1	0	0	0	2
CO2	3	1	0	1	3	2	2	2	2	1	1	2
CO3	3	1	0	1	3	2	2	2	2	1	1	2
CO4	3	1	0	1	3	2	2	2	2	1	1	2
CO5	1	3	2	3	2	2	1	1	2	1	2	2
Avg.	2.6	1.4	0.4	1.2	2.4	2	1.6	1.6	1.6	0.8	1	2

Course code	Mass transfer operations - II	Semester
BTCH601		VI

Teaching Scheme (Hours)				Teachin	g Credit		
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	2	1	6	3	1	1	5

Course Pre-requisites	Mass transfer operations - I
Course Category	Professional core courses
Course focus	Employability
Rationale	
Course Revision/	18/01/2022
Approval Date:	
Course Objectives	To enable the student to:
(As per Blooms'	1:To understand the basic concepts of various mass transfer
Taxonomy)	operations
	2: To select a suitable equipment for a given mass transfer
	operations
	3: To learn designing of mass transfer equipment used in industries.
	4: To learn equilibrium conditions for various systems
	5: To gain knowledge about cooling towers and their importance in
	industries.

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Humidification and Dehumidification Operations	20%	12
General principles, vapor-liquid equilibrium and enthalpy for a pure substance, absolute humidity, dry-bulb temperature, relative humidity, percentage absolute humidity, dew point, humid volume, humid heat, adiabatic saturation curves, wet-bulb temperature, gas- liquid contact operations, evaporative cooling. Types of cooling towers and their height calculations.		
Unit 2: Drying: and crystallization	20%	12
 Drying: Introduction and principles of drying, equilibrium, mechanism of drying, types of moisture in drying, time for drying, Freeze drying, microwave drying, infrared drying, vacuum drying, batch and continuous drying equipment – tray dryer, rotary dryer, spray dryer, fluidized bed dryer etc. Crystallization: Crystallization fundamentals, solubility and saturation, Miers theory of crystallization, crystal nucleation, crystal growth, population balance, importance of crystal size, material balance, calculation of yield, melt crystallization, cryogenic crystallization, Reactive crystallization, equipment for crystallization. 		
Unit 3: Liquid Liquid Extraction:	20%	12

Liquid-liquid equilibria, single stage extraction, multistage crosscurrent,		
counter-current and co-current extraction, stage efficiency, equipment for		
extraction. Design of extractors based on triangular diagrams.		
Unit 4: Adsorption and Ion Exchange	20%	12
Adsorption: Basic principles and equilibria in adsorption, types of		
adsorption-physical and chemical adsorption, adsorption adsorption,		
temperature swing adsorption, moving bed adsorber.		
Ion exchange: Principles of ion exchange, techniques and applications,		
equilibria and rate of ion exchange.		
Unit 5: Leaching and Membrane separation	20%	12
Leaching: General principles, continuous leaching, and ideal stage		
equilibrium, constant and variable underflow, equipment for leaching.		
Design based on right angle triangle diagram, Ponchon Savarit method.		
Membrane separation: Introduction to membrane separation processes		

List of Practical	Weightage	Contact hours
1: To study the humidification operation and calculate all the terminologies	10%	2
used for air water contact operation Calculate natural frequency for	/ _	_
undamped free vibration of a spring-mass system.		
2: To measure tower characteristic parameters KaV/L for various liquid and	10%	2
air flow rates (L/G) for forced draft countercurrent cooling tower.		
3:To determine rate of drying curve for a given solid in a fluidized drier at	10%	2
constant drying conditions		
4: To determine % crystallization of Crystallization of Benzoic Acid in	10%	2
water.		
5: To prepare the ternary diagram for a system of three liquid one pair	10%	2
partially soluble i.e. acetic acid, benzene and water system.		
6. To determine the % extraction for the benzoic acid from dilute aqueous	10%	2
solution using toluene as solvent.		
7. To study the (cross current) liquid liquid extraction for extracting acetic	10%	2
acid from benzene using water as solvent and determine:		
1. Efficiency stage wise & overall. 2. % of acetic acid removed per stage &		
overall removal of acetic acid. 3. Minimum & maximum solvent in 1 st		
stage.	100/	
8. To study and verify the Freundlich's Adsorption Isotherm of adsorption	10%	2
of Oxalic Acid and Charcoal.	100/	
9. To determine the efficiency of single stage leaching operation for	10%	2
leaching of NaOH aqueous solution & CaCO ₃ .	1.00/	2
10. To determine the stage efficiency and the overall recovery of NaOH for multistage areas summer leaching operation for leaching NaOH from	10%	Z
multistage cross current leaching operation for leaching NaOH from		
Inixture of NaOH and CaCO ₃ using water as a solvent.		

List of Tutorial	Weightage	Contact
		hours
Unit 1:	20%	2
1. Problems based on various terminologies of psychrometry.		

2. Problems based on psychrometric chart		
3. Problems based on size of cooling tower.		
4. Font: Times new roman, Sentence case, font size – 12, Justify.		
Unit 2:	20%	2
1. Problems based on drying time and moisture content.		
2. Problem based on crystallization yield.		
Unit 3:	20%	2
1. Problems based on triangular graphs.		
2. Problem based on single stage extraction.		
3. Problem based on multistage crosscurrent, counter-current and co-		
current extraction.		
Unit 4:	20%	2
1. Problems based on crosscurrent/ countercurrent adsorption.		
Unit 5:	20%	2
1. Problems based on design based on right angle triangle diagram,		
Problems based on the Ponchon Savarit method.		

Instructional Method and Pedagogy: Chalk-board, PowerPoint presentation

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students		
will be able to:		
CO1: Understand the practical importance of mass transfer		Understand
in industries.		Apply
CO2: Able to identify applications of different separation		
techniques in chemical industries.	Cognitive	Apply
CO3: Learn designing of mass transfer equipment used in		
industries.		Create
CO4: Learn equilibrium conditions for various systems.		Analyse
CO5: Gain knowledge about cooling towers and their		
importance in industries.		

Learning Re	sources
1.	Reference Books:
	2. R.E. Treybal, Mass Transfer Operations, McGraw Hill, 3rd Edition.
	3. W.L. McCabe, J. Smith and P. Harriot, Unit Operations of Chemical
	Engineering, Tata McGraw Hill, 7th Edition.
	4. B. K. Dutta, Principles of Mass Transfer and Separation Processes, 2nd
	edition, Prentice Hall of India, 2007.
	5. Seader, Henley, Roper, 'Seperation Process Principles', 3rd edition, John
	Wiley and Sons.
	6. Lyle Albright, 'Albright's Chemical Engineering Handbook', CRC Press.
	7. N.Ananthraman, K.M. Meera Begum, 'Mass Transfer- Theory and Practice',
	PHI Publications.

2.	Journals & Periodicals:
3.	Other Electronic Resources:

Evaluation Scheme	Total Marks						
Theory: Mid semester Marks	20 marks						
Theory: End Semester Marks	40 marks						
Theory: Continuous							
Evaluation Component	Attendance	05 marks					
Marks	MCQs	10 marks					
	Open Book Assignment	15 marks					
	Open Book Assignment	10 marks					
	Total	40 Marks					
Practical Marks							
	Attendance	05 marks					
	Practical Exam	20 marks					
	Viva	10 marks					
	Journal	10 marks					
	Discipline	05 marks					
	Total	50 Marks					
Project/ Industrial							
Internship Marks	Quantity of the Project/Industrial in	30 marks					
	terms of Language, Presentation &						
	format.	20 montro					
	subject on the Project/Industrial	50 marks					
	Industry/ University mentor's	30 marks					
	feedback on the Project/ Industrial.						
	Attendance	10 marks					
	Total	100 Marks					

	PSO1	PSO2	PSO2
CO1	3	2	2
CO2	3	3	2
CO3	3	3	3
CO4	3	2	2
CO5	3	1	1
Avg.	3	2.2	2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	1	1	2	3	2	2	3
CO2	3	2	3	2	2	3	0	2	3	2	2	3
CO3	2	2	3	3	3	3	2	3	3	2	2	3
CO4	1	2	3	3	3	2	2	2	3	2	3	3
CO5	2	2	2	2	3	1	1	1	2	2	2	2
Avg.	2.2	2.2	2.6	2.4	2.6	2	1.2	2	2.8	2	2.2	2.8

Course code	Chemical Reaction	Semester
BTCH602	Engineering - II	VI

	Teaching Sch	eme (Hours)			Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	0	0	3	3	0	0	3

Course Pre-requisites	Chemical Reaction Engineering-I and Mass transfer operations
	- I
Course Category	Professional core courses
Course focus	Employability
Rationale	
Course Revision/	18/01/2022
Approval Date:	
Course Objectives	To enable the student to:
(As per Blooms'	1. Learn the kinetics of fluid fluid reactions and reactor design.
Taxonomy)	2. Learn the kinetics of fluid solid reactions and reactor design
	3. Understand physical properties of solid catalyst.
	4. Learn the kinetics and mechanism of catalytic reaction.
	5. Apply to the kinetics concept in designing of catalytic reactors.

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Fluid - Fluid reaction kinetics and design:	20%	9
Introduction and rate equation of heterogeneous reaction. Fluid - Fluid		
reaction kinetics and design, The Rate Equation for Straight Mass Transfer		
(Absorption) of A, The Rate Equation for Mass Transfer and Reaction,		
Instantaneous reactions to slow reactions, Liquid film enhancement factor,		
Hatta number, gas - liquid reactors and its design.		
Unit 2: Fluid Particle Reaction kinetics and design:	20%	9
Selection of model, Progressive and shrinking core model for spherical		
particles, Diffusion through gas film control, diffusion through ash layer		
control, chemical reaction control, Determination of rate controlling step,		
Fluid particle reactor design.		
Unit 3: Catalysts and their Properties:	20%	9
Catalysts and their Properties Introduction to Catalysis, homogeneous and		
heterogeneous catalysis, water soluble catalyst. Preparation and		
Characterization of catalysts, Physical and chemical adsorption and metal		
dispersion, Adsorption isotherms, Physical properties of catalyst, surface		
area, void volume, solid density, pore analysis: pore size, pore volume		
distribution, catalyst promoters, Catalyst inhibitors, Catalyst poisons		

Unit 4: Solid-Catalyzed Reaction Kinetics: Nature and Mechanism of Catalytic reactions. Adsorption isotherms and rates of adsorption and desorption. Rate equations for surface kinetics, LHHW model, determining rate controlling step. Various types of reactors to determine kinetics of catalytic reaction.	20%	9
Unit 5: Introduction to Catalytic Reactors and basic design Heterogeneous Data analysis for Reactor Design. Effects of external mass transfer and heat transfer, Pore diffusion, Effectiveness factor. Designaspects of catalytic reactors, Catalyst deactivation. Introduction to Catalytic Reactors: Packed bed catalytic reactor, fluidized bed reactor, trickle bed reactor, slurry reactor.	20%	9

Instructional Method and Pedagogy: Chalk-board, PowerPoint, notes

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students		
will be able to:		
CO1: Develop the kinetics of fluid-fluid reactions and use		Develop
the appropriate kinetics in designing of		
non-catalytic reactors.		Develop
CO2: Develop rate expressions for gas-solid and liquid	Cognitive	
solid reactions and use the kinetics in designing of non-		Understand
catalytic reactors.		
CO3: Understand the physical properties of catalyst and		Analyse
its importance.		
CO4: Analyse the catalytic reactors and its applications in		Apply
industry.		
CO5: Apply the concept of kinetic model to design the		
catalytic reactor.		

Learning Re	sources
1.	Reference Books:
	1. H. Scott Fogler 'Elements of Chemical Reaction Engineering', 5th Edition,
	Prentice Hall India, (2015).
	2. Hougen O.A., Watson K. M., and Ragatz R.A., 'Chemical Process
	Principles', Part III, John Wiley, USA.
	3. L Schmidt, 'The Engineering of Chemical Reactions', 2nd Edition, Oxford,
	(2008).
	4. J. M. Smith, 'Chemical Engineering Kinetics', McGraw-Hill, USA.
	5. Lyle Albright, 'Albright's Chemical Engineering Handbook', CRC Press.
2.	Textbook:
	1. O. Levenspiel "Chemical Reaction Engineering", 3rd Edition, John Wiley &
	Sons.
3.	Journals & Periodicals:
4.	Other Electronic Resources:

Evaluation Scheme	Total Marks			
Theory: Mid semester Marks	20 marks			
Theory: End Semester Marks	40 marks			
Theory: Continuous				
Evaluation Component	Attendance	05 marks		
Marks	MCQs	10 marks		
	Open Book Assignment	15 marks		
	Open Book Assignment	10 marks		
	Total	40 Marks		
Practical Marks				
	Attendance	05 marks		
	Practical Exam	20 marks		
	Viva	10 marks		
	Journal	10 marks		
	Discipline	05 marks		
	Total	50 Marks		
Project/ Industrial				
Internship Marks	Quantity of the Project/Industrial in terms of Language, Presentation & format.	30 marks		
	Practical understanding of the subject on the Project/Industrial.	30 marks		
	Industry/ University mentor's feedback on the Project/ Industrial.	30 marks		
	Attendance	10 marks		
	Total	100 Marks		

	PSO1	PSO2	PSO2
CO1	3	1	2
CO2	3	2	1
CO3	3	2	1
CO4	3	2	1
CO5	3	2	1
Avg.	3	1.8	1.2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	1	0	0	0	1	0	0	1
CO2	3	3	2	2	1	0	0	0	1	0	0	1
CO3	3	3	2	2	1	0	0	0	1	0	0	1
CO4	3	3	2	2	1	0	0	0	1	0	0	1
CO5	3	3	3	2	1	0	0	0	1	0	0	1
Avg.	3	3	2.2	1.8	1	0	0	0	1	0	0	1

Course code	PROCESS EQUIPMENT	Semester
BTCH603	DESIGN - I	VI

Teaching Scheme (Hours)				Teachin	g Credit		
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	2	0	5	3	1	0	4

Course Pre-requisites	Heat transfer operations, Mass transfer operations
Course Category	Professional core courses
Course focus	Employability
Rationale	
Course Revision/	18/01/2022
Approval Date:	
Course Objectives	To enable the student to:
(As per Blooms'	1. Learn the basic design steps for piping system and fluid
Taxonomy)	transportation devices
	2. Learn the process design of various types of heat
	exchangers, condensers and reboilers
	3. Learn the process design of Distillation Column using
	various methods
	4. Learn the process design of absorption column
	5. Learn the process design of extractors

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Process design of piping systems and fluid transportation	15.5%	7
devices		
Introduction, process design of piping, piping colors and codes, NPSHA		
&NPSHR, selection criteria of pipes, fittings, valves, pumps, two phase		
flow system design		
Unit 2: Process design of Heat Exchangers	28.8%	13
Design method and criteria for selection of heat exchangers, design of		
condenser and selection criteria for horizontal and vertical condenser,		
process design of reboilers.		
Unit 3: Process design of Distillation Column	26.6%	12
Introduction, selection criteria of design variables for distillation, selection		
of tray and its design parameters, Multi – component distillation design		
using Fenskey – Underwood – Gilliland's (FUG) method.		

Unit 4: Process design of gas – liquid and liquid – liquid equipment	17.7%	8
Absorber: Selection criteria from different available types of absorption		
equipment, amount of solvent utilized, determination of tower diameter,		
pressure drop calculation, NtoG, HtoG and height of packing.		
Unit 5: Extractor:	11.1%	5
Selection criteria from different types of available extractor, choice of		
solvent utilization, Application of extraction in industry.		

Instructional Method and Pedagogy: PowerPoint presentation, chalk-board

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to: CO1: Design process equipment and modify the design of existing equipment to new process conditions or new required capacity CO2: Build a bridge between theoretical and practical concepts used for designing the equipment in any process industries. CO3: Create understanding of equipment design. CO4: Review the importance of design concepts in the process industry. CO5: Review the importance of property estimation.	Cognitive	Create Analyse Understand Apply Apply

Learning Re	sources
1.	Reference Books:
	1. Coulson and Richardson's Chemical Engineering Design (Volume 6), R. K.
	Sinnot, Elsevier Butterworth-Heinemann.
	2. Brownell and Young, Process Vessel Design, Wiley Eastern.
	3. Ludwig, E. E., Applied process design for chemical and petrochemical
	plants, volume 1,2 & 3, Third Edition, Butterworth- Heinemam.
	4. Perry's Chemical Engineers Handbook, Don Green and Robert H. Perry,
	McGraw Hill.
	5. Applied Process Design of Chemical and Petrochemical Plants, E.E.
	Ludwig, Gulf Professional Publications. Volume 1, 2 & 3
	Textbooks:
	1. Introduction to Process Engineering and Design, S. B. Thakore and B. I.
	Bhatt, Tata McGraw Hill.
2.	Journals & Periodicals:
3.	Other Electronic Resources:

Evaluation Scheme	Total Marks				
Theory: Mid semester Marks	20 marks				
Theory: End Semester Marks	40 marks				
Theory: Continuous					
Evaluation Component	Attendance	05 marks			
Marks	MCQs	10 marks			
	Open Book Assignment	15 marks			
	Open Book Assignment	10 marks			
	Total	40 Marks			
Practical Marks					
	Attendance	05 marks			
	Practical Exam	20 marks			
	Viva	10 marks			
	Journal	10 marks			
	Discipline	05 marks			
	Total	50 Marks			
Project/ Industrial					
Internship Marks	Quantity of the Project/Industrial in terms of Language, Presentation & format.	30 marks			
	Practical understanding of the subject on the Project/Industrial.	30 marks			
	Industry/ University mentor's feedback on the Project/ Industrial.	30 marks			
	Attendance	10 marks			
	Total	100 Marks			

	PSO1	PSO2	PSO2
CO1	2	2	1
CO2	3	3	2
CO3	1	0	1
CO4	3	1	0
CO5	3	3	2
Avg.	2.4	1.8	1.2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	0	2	1	1	2	3	3	2	3
CO2	3	3	2	1	3	3	2	1	3	3	3	3
CO3	1	1	0	2	0	1	3	0	0	3	0	2
CO4	3	3	2	2	2	1	0	0	1	3	3	2
CO5	3	3	2	2	3	2	2	1	3	3	3	3
Avg.	2.6	2.4	1.4	1.4	2	1.6	1.6	0.8	2	3	2.2	2.6

Professional Electives

COURSE CODE	COURSE NAME	SEMESTER
BTCH605 A	Petroleum Engineering	VI

Teaching Scheme (Hours)				Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	0	0	3	3	0	0	3

Course Pre-requisites	Nil		
Course Category	Professional Elective		
Course focus	Employability		
Rationale	international relevance		
Course Revision/	14/4/2017		
Approval Date:	25/03/2022		
Course Objectives	1. To understand the terminology, properties and classification		
(As per Blooms'	of petroleum		
(As per blooms Taxonomy)	2. To understand various refining aspects		
raxonomy)	3. To understand, the modern fractionation processes		

Course Content (Theory)	Weightage	Contact hours
Unit 1: Introduction:	20%	8
History and Terminology, Introduction to petroleum, important properties of petroleum, historical and modern perspectives, Indian Scenario Petroleum, important terminology and definition, composition and classification of petroleum.		
Unit 2: Origin and Occurrence:	20%	10
Origin of petroleum: Abiogenic origin, biogenic origin. Basic difference between origin theories, Petroleum composition and properties.		
Kerogen: Introduction to kerogen, properties of kerogen, composition and classification of kerogen. Isolation of kerogen methods, structural models for kerogen, kerogen maturation, methods for probing kerogen structure		

Unit 3: Introduction to Refining Processes:	20%	9
Introduction to refining of petroleum, Historical developments, Indian scenario of petroleum refining. Important products from petroleum, important test methods for the petroleum fractions, blending process for petroleum products etc. Catalysis And Refining Processes: Introduction to catalysis, importance of catalytic processes, various catalyst used in catalytic processes.		
Unit 4: Overview of Refining Processes: Various refining processes such as thermal methods, cracking processes, hydro processes, isomerization process, alkylation process, reforming process, polymerization process.	20%	8
 Unit 5: Petroleum Fractionation: Primary Treatments Of Petroleum/crude oil: Settling and sedimentation of petroleum, dewatering and desalting processes. Importance of desalting process,heating and pumping of wax petroleum/crude oil. Fractionation Process of Petroleum: Historical development of fractionation of petroleum, modern processes of fractionation such as atmospheric distillation, vacuum distillation and azeotropic and extractive distillation etc. arrangement of reflux type. Equipment used for petroleum fractionation such as columns, packing and trays etc. 	20%	10
Instructional Method and Pedagogy: Chalk-board, Power point presentation	n	1

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
 After successful completion of the above course, students will be able to: 1. CO1: To understand the terminology, properties and classification of petroleum 2. CO2: To understand various refining aspects 3. CO3: To understand, the modern fractionation processes 	Cognitive	Understand

Learning Resources					
1.	Reference Books: James Speight, "The Chemistry and technology of petroleum", 2ndEdition, Marcel Dekker,(1991).				

	W.L.Nelson ,Petroleum Refinery Engineering, McGrawHill, Newyork, (1958).R.A. Meyers, 'Handbook of Petroleum refining processes',3rd Edition, McGraw Hill, (2004)
2.	Journals & Periodicals:
3.	Other Electronic Resources:

Evaluation Scheme	Total Marks				
Theory: Mid semester Marks	20 marks				
Theory: End Semester Marks	40 marks				
Theory: Continuous Evaluation Component Marks	AttendanceMCQsOpen Book AssignmentOpen Book AssignmentTotal	05 marks10 marks15 marks10 marks40 Marks			

	PSO1	PSO2	PSO3
CO1	2	0	0
CO2	2	0	0
CO3	2	1	0
Avg.	2	0.3	0

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	2	2	1	1	1	1	1	1	1
CO2	1	1	1	1	1	2	2	1	2	1	1	1
CO3	1	1	1	1	1	1	2	1	2	1	1	1
Avg.	1.3	1	1	1.3	1.3	1.3	1.6	1	1.6	1	1	1

COURSE CODE	COURSE NAME	SEMESTER
BTCH605 B	POLYMER SCIENCE &	VI
	TECHNOLOGY	

]	Feaching Sch	neme (Hours	5)		Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	0	0	3	3	0	0	3

Course Pre-requisites	Nil				
Course Category	Professional Elective				
Course focus	Employability				
Rationale	international relevance				
Course Revision/	14/4/2017				
Approval Date:					
Course Objectives	Understand the basic concepts of monomer, polymer, degree of				
(As per Blooms'	polymerization, and repeating units and their properties				
Taxonomy)	Understand in details about the chemistry, polymerization process and rheology of polymers.				
	Analyse polymers by different characterization techniques				
	Apply plastic waste management knowledge				
	Select polymers for different applications				

Course Content (Theory)	Weightage	Contact hours
Unit 1: Fundamentals of polymers Theory: Introduction Introduction to polymers, Basic Concepts, Polymer based industries and feed stocks. Indian scenario of polymer industries. Classification of Polymers. State of polymer, structure property relations and transition temperatures. Polymer solutions, polymer characterization, Molecular weight & its determination techniques, polymer fractionation.	20	10
Unit 2: Classification of polymerization processes Theory: Introduction to polymerization process, Types of polymerization processes with their mechanism and kinetics: Chain polymerization, co- polymerization, addition polymerization, Condensation polymerization,	20	10

coordination polymerization, Techniques of polymerization.					
Unit 3: Types of polymers and their properties Plastics materials & some typical manufacturing process of some polymers: Polyolefins, Polycarbonates, Poly Vinyl Chloride (PVC), Polystyrene, PMMA etc.), Rubbers and fibre materials with typical manufacturing process. Mechanical properties: Elasticity, visco-elasticity, factors affecting mechanical behaviour etc.	30	15			
Unit 4: Recycling of polymers/plastics Theory: Recycling of polymers/ plastics, Importance of recycling, Recycling codes.	15	5			
Unit 5: Plastic Waste Management: Theory Necessity and importance, social responsibilities towards plastic waste management.	15	5			
Instructional Method and Pedagogy: Chalk-board, Power point presentation					

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain	
After successful completion of the above course, students will be able to:			
CO1: Understand the basic concepts of monomer, polymer, degree of polymerization, and repeating units and their properties	Cognitive	Understand,	
CO2: Understand in details about the chemistry, polymerization process and rheology of polymers.		Analyse, Evaluate, Apply	
CO3: Analyse polymers by different characterization techniques			
CO4: Apply plastic waste management knowledge			
CO5: Select polymers for different applications			

Learning Re	sources
1.	Reference Books:
	Premamoy Ghosh, "Polymer science and Technology: Plastic, rubbers, blends and composites, 3rd Edition, Mc Graw Hill Education, (2011).
	Vasant R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar "Polymer Science", New age international, New Age International Pvt. Ltd Publishers, (2015).
	George Odian, "Principle of polymerization", 4th Edition, WileyBlackwell publication (2004).
2.	Journals & Periodicals:
	Reactive and Functional Polymers, Polymer Journal, Journal of Polymer Science
3.	Other Electronic Resources:
	NPTEL

Evaluation Scheme	Total Marks							
Theory: Mid semester	20 marks							
Marks								
Theory: End Semester	40 marks							
Marks								
Theory: Continuous								
Evaluation Component	Attendance	05 marks						
Marks	MCQs	10 marks						
	Open Book Assignment	15 marks						
	Open Book Assignment	10 marks						
	Total	40 Marks						

	PSO1	PSO2	PSO3
CO1	01 3 3		1
CO2	2	1	0
CO3	2	2	1
CO4	3	3	2
CO5	3	3	2
Avg.	2.6	2.4	1.2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	0	2	2	0	0		1	0	1
CO2	2	3	3	2	1	3	1	0	0	0	1	1
CO3	3	2	0	3	3	0	1	0	0	2	1	1
CO4	3	3	3	2	3	3	3	3	3	2	3	3
CO5	2	3	3	2	3	3	2	0	1	2	3	3
Avg.	2.4	2.6	2	1.8	2.4	2.2	1.4	0.6	1	1.4	1.6	1.8

COURSE CODE	COURSE NAME	SEMESTER
BTCH605E	GREEN TECHNOLOGY	VI

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Lecture Practical Tutorial		Total Credit
0	0	0	3	3	0	0	3

Course Pre-requisites	Nil
Course Category	Professional Elective
Course focus	Employability
Rationale	
Course Revision/	
Approval Date:	
Course Objectives	
(As per Blooms' Taxonomy)	

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Introduction to Green Technology	20%	8
The twelve Principles of Green Chemistry and Green Engineering with		
examples. Waste - sources of waste, different types of waste, chemical,		
physical and biochemical methods of waste minimization and recycling.		
Pollution – types, causes, effects and abatement. Environmentally benign		
processes alternate solvents- supercritical solvents, ionic liquids, water as a		
reaction medium, energy efficient design of processes- photo, electro and		
sonochemical methods, microwave assisted reactions.		
Unit 2: Clean Energy production	20%	10
Cleaner Production Concept: Theory of cleaner production, Effect of		
Cleaner Production on industrial economy, Need for Cleaner Production,		
Barriers to Cleaner Production. Cleaner Production Methodology: Six step		
methodology for Cleaner Production, Total quality management concepts,		
Cleaner Production Options, Cleaner Production Programme Indicators,		
Ecologically friendly products, environmental designation, concept of eco-		
design, Case Studies on Cleaner Production: Cleaner production case study		
in following Industries Textile processing, Paper mill, Dye manufacturing		
Renewable Energy Production: Solar Energy, SPC, Fuel Cell		

Technology, clean hydrogen production, nuclear fuel, wind energy, wave energy, hydrogen energy, ocean thermal energy, Bio ethanol, Bio- diesel, Fuel economy, Innovation in electric equipment.		
Unit 3: Waste to energy	20%	10
Waste as a Renewable Energy Source, Waste-to Energy Conversion:		
Thermo-chemical Conversion, Biochemical Conversion, Physico-chemical		
Conversion, Factors affecting Energy Recovery from waste, Agricultural		
Residues, Animal Waste, Industrial Wastes, Forestry Residues, Converting		
Waste Heat to Electricity, Bio energy as by product of waste processing,		
Environmental significance, Introduction to anaerobic digestion, Methane		
production, Bio-methanation from sludge digestion		
Unit 4: Green Farming and Concept of Green Building	20%	10
Organic farming: Soil quality index, soil quality improvement, organic		
farming, organic fertilizer: its types and production, green pesticide, crop		
rotation, Organic farming, Need of Organic Farming, Benefits of Organic		
Farming, Social aspects of Organic Farming, Market aspects of Organic		
Farming, Organic Fertilizer, Benefits of Organic Fertilizer, Preparation of		
Organic Fertilizer, Sources of nutrients for Organic Agriculture: Organic		
Manure – Farmyard manure(FYM) Rural compost, City compost, Oil		
cakes, Animal wastes, Vermicomposts, etc; Characterization and Nutrients		
content of the above sources Concept of Green Building: Need of energy in		
buildings, Role of building design and building services to evaluate the		
energy performance in buildings. Study of Climate and its influence in		
building design for energy requirement, Principles of energy conscious		
design of buildings, Passive Cooling.		
Unit 5: Development of Green Industrial processes	20%	7
Pollution statistics from various industries, General Characteristics of		
Industrial Effluents, Effects on Environment - ISI tolerance limits for		
discharging industrial effluents into surface water, into public sewers and		
onto land for irrigation - Toxic chemicals from industry. Pretreatment of		
Industrial effluents		
Instructional Method and Pedagogy: Chalk-board, Power point presentation	on	

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1:		
CO2:	Cognitive	
CO3:		
CO4:		
CO5:		

Learning Re	sources
1.	Reference Books:
	1. Green Chemistry – An introductory text - M. Lancaster, RSC
	2. Green chemistry metrics - Alexi Lapkin and David Constable (Eds), Wiley publications.
	3. Numersorn, N.L., Liquid Waste from Industry – Theories, Practice and Treatment, Addison-Wesley.
	4. Patwardhan, A.D., Industrial WasteWater Treatment, PHI Learning, 2009 Rao, M.N., and Dutta, A.K., Wastewater Treatment, IBH Publications.
	5. Misra Krishna B., Cleaner Production: Environmental and Economic Perspectives, Springer, Berlin, Latest edition.
	6. Dr. Ruth Hillary , Environmental Management Systems and Cleaner Production Wiley, New York, Latest edition.
2.	Journals & Periodicals:
	Green Technology Journal
3.	Other Electronic Resources:
	NPTEL

Evaluation Scheme	Total Marks	
Theory: Mid semester	20 marks	
Marks		
Theory: End Semester	40 marks	
Marks		
Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open Book Assignment	15 marks
	Open Book Assignment	10 marks
	Total	40 Marks

	PSO1	PSO2	PSO3
CO1			
CO2			
CO3			
CO4			
CO5			
Avg.			

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												
Avg.												

COURSE CODE	COURSE NAME	SEMESTER
BTCH605F	INDUSTRIAL	VI
	ENGINEERING	
	PRACTICES	

Teaching Scheme (Hours)					Teachin	g Credit		
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutoria		Tutorial	Total Credit	
3	0	0	3	3	0	0	3	

Course Pre-requisites	Nil
Course Category	Professional Elective
Course focus	Employability
Rationale	international relevance
Course Revision/	14/4/2017
Approval Date:	
Course Objectives	To develop a student's skills in understanding the Intra-functional
(As per Blooms'	linkage of respective Units concepts and activities.
Taxonomy)	To understand the importance of critical data and its analysis, used in each Unit.
	It provides them overview and understand the theories and principles of modern management.
	To enhance their skills to achieve the desired goal in a more efficient and effective way with use facts/data.
	To encourage and make an appreciation of these principles in relation to their own experiences and selected case studies

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Principles of Management	20%	9
Theory: Organization, POLCA, Management Functions, Management		
Roles and skills Management competency's Six M's of Management		
Heit 2. On small Brannel, Statistics	200/	11
Unit 2: Operation Research, Stausucs	20%	11
Operation research Tools & Techniques, Linear Programming		
Transportation, Queuing, Decision theory Statistics parameters, Qualitative		
& Quantitative data Quartile Measures of Variation		

Unit 3: Industrial Engineering	20%	8
Industrial Engineering, Work study, Techniques of Works study, Time and Motion Study, Flow process chart		
Unit 4: Project Management, Operation Management	20%	7
Phases of Project and Operation Management, Constraints, EVM, Resource Management		
Unit 5: Financial and Cost Management	20%	10
Time value of money, Compounding, Discounting, IRR, NPV, Payback period, Discounted payback period, Balance sheet, P&L, Cash flow Cost classifications, Costing methods		
Instructional Method and Pedagogy: Chalk-board, Power point presentation	on	

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1: To develop a student's skills in understanding the Intra-functional linkage of respective Units concepts and activities.	Cognitive	Understand,
CO2: To understand the importance of critical data and its analysis, used in each Unit.		Analyse, Evaluate, Apply, create
CO3: It provides them overview and understand the theories and principles of modern management.		
CO4: To enhance their skills to achieve the desired goal in a more efficient and effective way with use facts/data.		
CO5: To encourage and make an appreciation of these principles in relation to their own experiences and selected case studies		

Learning Re	sources
1.	Reference Books: Principles and Practice by S K Mandal
2.	Journals & Periodicals:
3.	Other Electronic Resources:

Evaluation Scheme	Total Marks						
Theory: Mid semester Marks	20 marks						
Theory: End Semester Marks	40 marks						
Theory: Continuous							
Evaluation Component	ation ComponentAttendance05						
Marks	MCQs	10 marks					
	Open Book Assignment15 marksOpen Book Assignment10 marks						
	Total	40 Marks					

	PSO1	PSO2	PSO3
CO1	0	0	2
CO2	0	0	3
CO3	0	0	1
CO4	0	0	2
CO5	0	0	2
Avg.	0	0	2

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	0	0	1	0	0	3	1	3	3	1	3	3
CO2	2	2	0	1	1	1	0	3	1	2	2	2
CO3	1	1	0	1	1	1	0	2	2	1	1	1
CO4	2	1	1	1	0	0	0	1	2	1	2	3
CO5	1	1	1	1	1	2	0	1	2	1	3	3
Avg.	1.2	1	0.6	0.8	0.6	1.4	0.2	2	2	1.2	2.2	2.4

COURSE CODE	COURSE NAME	SEMESTER
BTCH605G	ADVANCED SEPARATION	VI
	TECHNIQUES	

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Total Credit	
3	0	0	3	3	0	0	3

Course Pre-requisites	Mass Transfer Operations
Course Category	Professional Elective
Course focus	Employability
Rationale	
Course Revision/	12-06-2018
Approval Date:	21-03-2023
Course Objectives (As per Blooms' Taxonomy)	 Understand importance of advanced separation techniques in industries. Able to identify applications of different separation techniques in chemical industries. To utilize the advanced separation technique in problem solving where conventional techniques are not fruitful and require replacement. Learn advantages and disadvantages of advanced separation techniques. To select criteria for advanced separation techniques and conventional separation techniques.

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Introduction to membranes and membrane processes	20%	9
Principles, mechanisms, membrane materials and various membrane		
modules used in membrane separation processes, classification, application		
& advantages of membrane separation processes. Membrane Separation		
Processes Gas separation processes, reverse osmosis, ultrafiltration.		
Unit 2: Membrane separation Processes	20%	9
Pervaporation, dialysis and electrodialysis, membrane reactor		
Unit 3: Super Critical Extraction	20%	9
Working Principle of supercritical extraction, advantage & disadvantages		

of supercritical solvents over conventional liquid solvents, advantage & disadvantages of supercritical extraction over liquid-liquid extraction, applications of supercritical extraction Unit 4: Osmotic and Short Path Distillation Osmotic Distillation: Concept, working and application of osmotic distillation	20%	9
Short Path Distillation: Concept & working of short path Distillation Unit (SPDU), Difference between short path distillation & molecular distillation, applications of SPDU		
Unit 5: Reactive, Catalytic and pressure swing distillation	20%	9
 Reactive and Catalytic Distillation: Concept, advantages and disadvantages, applications. Pressure Swing Distillation: Concept & Working of pressure swing distillation (PSD), Advantage & Disadvantages of PSD over azeotropic and Extractive Distillation, Applications of PSD 		
Instructional Method and Pedagogy: Chalk-board, Power point presentation	on	

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
 After successful completion of the above course, students will be able to: CO1: Understand importance of advanced separation techniques in industries. CO2: Able to identify applications of different separation techniques in chemical industries. CO3: To utilize the advanced separation technique in problem solving where conventional techniques are not fruitful and require replacement. CO4: Learn advantages and disadvantages of advanced separation techniques. CO5: To select criteria for advanced separation techniques and conventional separation techniques. 	Cognitive	Understand Apply Evaluate

Learning Re	sources
1.	Reference Books:

	1. S. B. Thakore and B. I. Bhatt, Introduction to Process Engineering and Design, Tata Mc-Graw Hill
	2. W.L. McCabe, J. Smith and P. Harriot, Unit Operations of Chemical Engineering, 7th Edition, Tata McGraw Hill.
	3. Membrane separation Processes, by Kaushik Nath, PHI pvt. Ltd., 2008
	4. Perry Chemical Engineers Handbook' 8th Edition by R.H Perry and D. Green
2.	Journals & Periodicals:
3.	Other Electronic Resources:
	NPTEL

Evaluation Scheme	Total Marks			
Theory: Mid semester Marks	20 marks			
Theory: End Semester Marks	40 marks			
Theory: Continuous Evaluation Component Marks	Attendance MCQs Open Book Assignment Open Book Assignment Total	05 marks 10 marks 15 marks 10 marks 40 Marks		

	PSO1	PSO2	PSO3
CO1	2	2	0
CO2	3	1	0
CO3	3	1	0
CO4	2	0	0
CO5	2	1	1
Avg.	2.4	1	0.2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	0	0	0	1	2	3	0	0	0	0	0
CO2	3	1	1	0	2	3	2	0	0	0	0	1
CO3	3	2	1	0	3	3	1	2	0	0	1	0
CO4	2	1	0	1	1	2	1	1	0	0	0	1
CO5	3	3	2	1	2	0	3	2	0	0	1	1
Avg.	2.4	1.4	0.8	0.4	1.8	2	2	1	0	0	0.4	0.6

COURSE CODE	COURSE NAME	SEMESTER
BTOE01	PLANT UTILITIES	VI

Teaching Scheme (Hours)				Teachin	g Credit		
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	0	0	3	3	0	0	3

Course Pre-requisites	NIL
Course Category	Professional Elective
Course focus	Employability
Rationale	international relevance
Course Revision/ Approval Date:	14/4/2017
Course Objectives	Student will be able to interpret the usage of water as utility across
(As per Blooms' Taxonomy)	various applications in an industry.
	Knowledge of utilization of air and various form of air utilization in industry.
	Understanding of application and means of generation of steam in industry.
	Understanding of refrigeration systems and its utilization in an industry.
	Knowledge of implementing a venting system and vacuum system in an industry

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Water	20%	10
Raw water storage and treatment, Treatment of water for soft water and D.M. water and		
RO water, Cooling water system, Fire water system.		
Unit 2: Air	20%	10
Compressed air for blowers and compressors. Classification of Compressor, Reciprocating		
Compressor, Single Stage and Two Stage Compressor, Air drying system for instrument		
air and plant air. Humidification and dehumidification of air, operational, maintenance and		
safety aspects as utilities.		
Unit 3: Steam	20%	10
Properties of steam, steam generation by boilers, types of boilers and their operation, Steam		
generation by using process waste heat, Distribution of steam in plant, Steam distribution		
including appropriate mechanical valves and instrumentation, Steam traps.		
Unit 4: Refrigeration	20%	10

Refrigeration mechanisms like compression refrigeration, absorption refrigeration and vacuum ejector system, Types of refrigerants, Importance of insulation, insulation material and their effect on various materials of equipment piping, fitting and valves.		
Unit 5: Vacuum & Venting Systems	20%	5
Selection of vacuum system for various process operations, Introduction to vacuum systems and types of vents.		
Instructional Method and Pedagogy: Chalk-board, Power point presentation		

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain	
After successful completion of the above course, students will be able to:			
CO1: Student will be able to interpret the usage of water as utility across various applications in an industry.			
CO2: Knowledge of utilization of air and various form of air utilization in industry.	Cognitive	Understand, Analyse, Remember, Apply	
CO3: Understanding of application and means of generation of steam in industry.			
CO4: Understanding of refrigeration systems and its utilization in an industry.			
CO5: Knowledge of implementing a venting system and vacuum system in an industry			

Learning Re	sources
1.	Reference Books: Perry R. H., Green D., Perry's Chemical engineering handbook. Jack Broughton; Process utility systems; Institution of Chem. Engineers U.K.
2.	Journals & Periodicals:
3.	Other Electronic Resources:

Evaluation Scheme	Total Marks					
Theory: Mid semester Marks	20 marks					
Theory: End Semester Marks	40 marks					
Theory: Continuous						
Evaluation Component	Attendance	05 marks				
Marks	MCQs	10 marks				
	Open Book Assignment 15 marks					
	Open Book Assignment	10 marks				
	Total	40 Marks				

	PSO1	PSO2	PSO3
CO1	2	1	2
CO2	2	2	1
CO3	2	1	1
CO4	2	2	1
CO5	2	1	1
Avg.	2	1.4	1.2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Chemical Engineering Course Curriculum Academic Year 2023-24

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1	2	2	3	2	2	3	2	1
CO2	2	1	2	2	1	2	2	2	2	3	2	1
CO3	2	1	2	2	1	2	2	2	2	3	2	1
CO4	3	2	2	3	2	2	3	1	2	2	2	1
CO5	2	1	2	2	1	2	2	2	2	3	2	1
Avg.	2.2	1.4	1.8	2	1.4	2	2.4	1.8	2	2.8	2	1

BTCH701	Process Modeling,	VII
	Simulation and Optimization	

Teaching Scheme (Hours)				Teachin	g Credit		
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
4	2	0	6	4	1	0	5

Course Pre-requisites	Knowledge of unit operations, material & energy balances.				
Course Category	Core				
Course focus	Employability and Skill Development				
Rationale					
Course Revision/	18/01/2022				
Approval Date:					
Course Objectives	To enable the student to:				
(As per Blooms'	1. Understand and learn the concepts for applying modeling based				
Taxonomy)	simulation and Techniques.				
	2. Perform the simulation of the chemical processes, different parts				
	of the processes and unit operations				
	3. Get familiar with the preferred software packages and optimization				
	techniques to solve linear programming and nonlinear programming problems				
	4. Use principles of Engineering to develop equality and inequality				
	constraints.				
	5. Learn various optimization techniques and optimize the problems linked with chemical engineering.				

Course Content (Theory)	Weightage	Contact
		hours
Unit 1:	5%	4
Introduction to Modeling, Simulation & Optimization and applications in		
Chemical Engineering.		
Unit 2: Modeling Role of modeling in chemical engineering, classification of process models, model building, characteristics of mathematical models, formulation of dynamic models with various case studies based on mass, component, momentum and energy balances, Fluid flow, heat transfer, mass transfer and reaction engineering phenomena.	25%	13
Unit 3: Simulation Role of simulation in chemical engineering, partitioning and tearing, sequential and modular approaches to process simulation, analytical and numerical methods for solving model equations, accuracy and error analysis, commercial simulators, introduction to role of computation in simulation.	25%	13
Unit 4: Optimization	15%	12

Introduction to optimization, types of optimizations, optimization problem and its formulation, general approach for solution, objective functions, classification of optimization problems and methods.		
Unit 5: Optimization Techniques	30%	18
Conditions for maxima/minima; analytical methods: direct search (without		
constraints), lagrangian multiplier (with constraints), gradient method of		
optimization; single and multivariable search linear (LP) and nonlinear		
(NLP) programming with constraints and their applications; examples of		
optimization in chemical processes like: optimizing recovery of waste heat,		
optimal shell and tube heat exchanger design, optimal design and operation		
of binary distillation column, chemical reactor design and operation.		

List of Practical	Weightage	Contact
		hours
1: Introduction to Software Packages	10%	2
2: Introduction to simulation using, flow sheeting concepts (sequential modular, equation oriented) by using ASPEN Plus.	10%	2
3: To perform pure component property analysis by using ASPEN Plus.	10%	2
4: To perform property analysis of mixture by using ASPEN Plus.	10%	2
5: Simulation of Flash Distillation by using ASPEN Plus.	10%	2
6. Compute the bubble point by using ASPEN Plus.	10%	2
7. Compute the dew point by using ASPEN Plus.	10%	2
8. Produce Txy and Pxy diagram by using ASPEN Plus.	10%	2
9. Simulation of binary distillation column by using ASPEN Plus.	10%	2
10. Simulation of reactor and to estimate the %conversion using ASPEN Plus.	10%	2

Instructional Method and Pedagogy: Chalk-board, industrial visit, activities, PowerPoint

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students		
will be able:		
CO1: To understand computational techniques to solve the		Understand
process models.		Apply

Learning Re	sources
1.	Reference Books:
	1. Wayne Bequette, "Process Dynamics: Modeling, Analysis and Simulation",
	Prentice Hall International Inc.
	2. William L. Luyben, "Process Modeling, Simulation and Control for Chemical
	Engineers", McGraw Hill International Editions.
	3. Ramiez, 'Computational methods for process simulation', Butterworth,
	(1992).
2.	Textbook:
	1. B. V. Babu, "Process Plant Simulation". Oxford, (2005).
	2. Edgar, Himmelblau, and Lasdon "Optimization of Chemical Process"
	McGraw-Hill, (1990)
3.	Journals & Periodicals:
	1. International Journal of Modeling, Simulation, and Scientific Computing.
	2. International Journal of Modeling and Simulation.
	3. International Journal of Modeling, Simulation and Applications, Simulation
	Modelling Practice and Theory
4.	Other Electronic Resources:
	NPTEL

Evaluation Scheme	Total Marks					
Theory: Mid semester	20 marks	20 marks				
Marks						
Theory: End Semester	40 marks					
Marks						
Theory: Continuous						
Evaluation Component	Attendance	05 marks				
Marks	MCQs	10 marks				
	Open Book Assignment	15 marks				
	Article Review	10 marks				
	Total	40 Marks				

Total	50 Marks
Discipline	05 marks
Journal	10 marks
Viva	10 marks
Practical Exam	20 marks
Attendance	05 marks

	PSO1	PSO2	PSO3
CO1	1	1	0
CO2	3	2	1
CO3	2	3	1
CO4	3	3	1
CO5	2	3	2
Avg.	2.2	2.4	1

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	0	1	0	1	2	0	1	2	0	1
CO2	3	2	0	1	0	0	1	0	2	3	1	2
CO3	2	3	3	1	3	2	0	1	2	3	3	2
CO4	3	2	3	2	3	1	0	0	3	3	2	2
CO5	3	3	3	2	3	1	1	1	3	2	3	3
Avg.	2.4	2.2	1.8	1.4	1.8	1	0.8	0.4	2.2	2	1.8	2

BTCH702	PLANT DESIGN &	VII
	ECONOMICS	

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	0	0	3	3	0	0	3

Course Pre-requisites	Basic knowledge of chemical processing plant
Course Category	Core
Course focus	Employability
Rationale	
Course Revision/	18/01/2022
Approval Date:	
Course Objectives	To enable the student:
(As per Blooms'	1: To understand the fundamentals of process plant design.
Taxonomy)	2: To learn the design of process auxiliaries.
	3: To learn the development of plant layout.
	4: To study the different factors affecting project cost estimation.
	5. To understand project planning and scheduling.

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Introduction	17.7%	8
Introduction to Plant Design, Process flow sheets development, Types of		
flow sheets, Tools of the process design, Selection of process, Factors		
affecting process selection, Types of project design, Pilot plant, Safety		
Factors.		
Unit 2: Process Auxiliaries and Utilities Theory	20%	9
Process Auxiliaries: Piping design, layout, support for piping		
insulation, types of valves, process control & instrumentation control		
system design		
Process Utilities: Process water, boiler feed water, water treatment &		
disposal, steam, compressed air and vacuum system.		
Unit 3: Optimum Design Strategy for Process Equipment and Plant	20%	9
Layout		
Standard and special equipment, Material of construction for equipment,		
Specification sheet, Choice of equipment such as reactor, Mass transfer		
equipment, Heat transfer equipment, Factors affecting plant location,		
Principle of plant layout, Use of scale models		
Unit 4: Cost Estimation & Depreciation	22.2%	10
Cost Estimation: Factors involved in project cost estimation, Total fixed		
& working capital, Types & methods of estimation of total capital		
investment, Estimation of total product cost, Cost index factors		

involved Depreciation: Types & methods of determination of depreciation, Evaluation of depreciation		
Unit 5: Profitability and Project Planning Alternative investment & replacement methods for profitability evaluation, Break-Even Point, Economic consideration in process and equipment design, Rate of return, Payback period, Inventory control Project Planning & Scheduling: Introduction, PERT & CPM, Bar chart	20%	9

Instructional Method and Pedagogy: Chalk-board, PowerPoint presentation

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students		
CO1: Understanding of the plant design and will be able to		Understand
select the process.		0 110010 0010
CO2: Design different auxiliaries and utility sections of	Cognitive	Create
process plant.		Create
CO3: Design the overall plant layout.		Analyse
CO4: Estimate the cost of a project.		Analyse
CO5: Calculate breakeven point and will be able to do		
scheduling of a project plan.		

Learning Re	sources
1.	Reference Books:
	1. Perry R. H., "Chemical Engineering Handbook", McGraw Hill, 7th Edition.
	2. F. C. Vibrandt and C. E. Dryden, "Chemical Engineering Plant Design",
	McGraw Hill, 5th Edition.
	3. Ernst E. Ludwig, "Applied Project Engineering & Management", Gulf Pub.
	Co., (1988).
	4. R Turton, R Balie, WB Whiting, J Shaeiwitz, D Bhattacharya Prentice Hall
	(4th Edition) Analysis, Synthesis, and Design of Chemical Processes 2013
	5. Douglas J McGraw-Hill Sciences (1 st Edition) Conceptual Design of
	Chemical Processes
2.	Textbook:
	1. M. S. Peters and Timmerhaus, "Plant Design & Economics for Chemical
	Engineers", McGraw Hill, 5th Edition.
3	Journals & Periodicals:
	1. International Journal of Production Research, Taylor & Francis Online
4	Other Electronic Resources:
	1. Process Design Decisions & Project Economics, NPTEL

Evaluation Scheme	Total Marks				
Theory: Mid semester	20 marks				
Marks Theory: End Semester Marks	40 marks				
Theory: Continuous					
Evaluation Component	Attendance	05 marks			
Marks	MCQs	10 marks			
	Open Book Assignment	15 marks			
	Article Review	10 marks			
	Total	40 Marks			

PSO1	PSO2	PSO3
1	1	0
3	3	1
2	2	1
2	3	2
2	0	1
2	1.8	1
	PSO1 1 3 2 2 2 2 2 2 2	PSO1 PSO2 1 1 3 3 2 2 2 3 2 0 2 1.8

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	0	1	0	1	2	0	1	2	0	1
CO2	3	2	3	1	3	2	1	0	3	3	3	2
CO3	3	2	1	0	2	1	1	0	3	3	2	3
CO4	3	3	1	2	3	3	1	2	3	3	3	3
CO5	2	2	1	3	1	0	0	2	2	3	3	2
Avg.	2.4	2	1.2	1.4	1.8	1.4	1	0.8	2.4	2.8	2.2	2.2

BTCH708	PROCESS EQUIPMENT	VII
	DESIGN - II	

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
2	0	1	3	2	0	1	3

Course Pre-requisites	Engineering Mechanics, Process Equipment Design - I
Course Category	Core
Course focus	Employability and Skill Development
Rationale	
Course Revision/	18/01/2022
Approval Date:	21/03/2023
Course Objectives	To enable the student:
(As per Blooms'	1: To understand the codes/standards for designing a process
Taxonomy)	equipment in mechanical aspects and to learn about properties associated with material selection for construction of pressure vessels.
	2: To gain knowledge about hazards occurring and safety measures adopted in process industries.
	3: To learn the design aspects of supports and other peripherals
	required for pressure vessels
	4: To learn the methods for designing a pressure vessel.
	5. To gain knowledge about sustainability of a process in terms of
	design aspects.

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: : Introduction to Stress and Strain relationship,	13.34%	4
Terminologies		
Selection of materials of construction for piping, Stress & strain		
relationships. Fabrication and finishing techniques for process equipment.		
Design codes and terminologies associated with pressure vessel design.		
Unit 2: Design of Shell, Design of Heads, L/D ratio of vessel &	13.34%	4
Compensation for Opening		
Design of different components of pressure vessels like Shell, Heads, L/D		
ratio & compensation for the openings.		
Unit 3: Design of supports and flanges	20%	6
Different types of supports, mechanical design of bracket support, skirt,		
support & saddle support, classification of flanges, their important features		
& selection criteria.		
Unit 4: Mechanical design of pressure vessel:	26.67%	8
Unit 4: Mechanical design of pressure vessel:		
Classification of pressure vessel, mechanical design of shell and head: shell		

and head subjected to internal pressure, Graphical & analytical method for Shell, different types of head, their selection criteria, Mechanical design of heads.		
Unit 5: Vessel under external pressure, Vessel under very high pressure Design of vessels with Inside vacuum, high pressure outside & combination of both. Design of external pressure vessel with elastic & plastic failures, Theories of elastic failure for design of high pressure vessels, Monobloc & its limitations.	26.67%	8

Instructional Method and Pedagogy: Chalk-board, PowerPoint presentation, tutorials

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able: CO1: To understand the codes/standards for designing a process equipment in mechanical aspects. CO2: To understand about properties associated with material selection for construction of pressure vessels. CO3: To design aspects of supports and other peripherals required for pressure vessels. CO4: To design of a pressure vessel. CO5: To understand sustainability of a process in terms of design aspects.	Cognitive	Understand Understand Create Create Understand

Learning Re	sources
1.	Reference Books:
	2. Brownell and Young, 'Process Equipment Design', 1st Edition, Wiley
	Publication, (2009).
	3. S. B. Thakore and B. I. Bhatt, 'Introduction to Process Engineering and
	Design', 2nd Edition, McGraw-Hill Education (India) Pvt. Ltd., (2015).
	4. Perry's Chemical Engineers Handbook, 8th Edition, Don Green and Robert
	H. Perry, Mc- Graw Hill.
2.	Textbook:
	1. V.V. Mahajani and S. B. Umarji, 'Joshi's Process Equipment Design', 5 th
	Edition, Trinity Press, (2017).
	2. B.C. Bhattacharya, 'Introduction to chemical equipment design – Mechanical
	aspects'. CBS Publishing Co., (2008).
3	Journals & Periodicals:
	1. IS:2825-1969, Design Codes for Unfired Pressure Vessels
	2. International Journal of Pressure Vessels and Piping, Elsevier
4	Other Electronic Resources:

Evaluation Scheme	Total Marks	
Theory: Mid semester	20 marks	
Marks		
Theory: End Semester	40 marks	
Marks		
Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open book	15 marks
	Article review	10 marks
	Total	40 Marks

	PSO1	PSO2	PSO3
CO1	2	1	1
CO2	2	1	1
CO3	3	3	0
CO4	3	3	0
CO5	1	1	0
Avg.	2.2	1.8	0.4

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	1	1	2	1	2	2	0	0	2
CO2	1	2	2	2	1	2	3	2	2	0	0	2
CO3	3	3	3	2	2	2	2	1	2	1	1	1
CO4	3	3	3	2	2	1	2	1	2	1	1	2
CO5	2	2	2	1	1	2	3	1	1	2	2	2
Avg.	2.2	2.4	2.4	1.6	1.4	1.8	2.2	1.4	1.8	0.8	0.8	1.8

BTCH704	Chemical Process Safety	VII

Teaching Scheme (Hours)				Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	0	0	3	3	0	0	3

Course Pre-requisites	Knowledge about chemical process equipment
Course Category	Core
Course focus	Employability
Rationale	
Course Revision/	18/01/2022
Approval Date:	
Course Objectives	To enable the student:
(As per Blooms'	1: To understand the norms related to alarm management system
Taxonomy)	related to SCADA and DCS system.
	2: To understand Hazard and operability studies.
	3: To understand general aspects of fire, explosions & safety norms.
	4: To learn the process plant safety.
	5. To learn case studies of major disasters.

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Alarm Management System	22.2%	10
Alarm Management Best Practices, The History and Nature of Alarm		
Problem, Common DCS and SCADA Alarm Display, Capabilities and Their Misuse, Alarm Data Types, Interlook and other sefectured systems		
Their Misuse, Alarm Data Types, interlock and other safeguard systems, The Future of Alarm Management		
The Puture of Alarm Management		
Unit 2: Hazard and Operability Studies	26.6%	12
Hazard analysis. Failure modes and effect analysis, fault tree analysis, event		
tree analysis. Acceptable risk and safety properties, protective equipment		
for personal and plant for various hazards, safety procedure, emergency		
Occupational safety rules and regulations. Layer of protection analysis		
I OPA		
Unit 3: Fire and Safety	22.2%	10
General aspects of fires and explosions, Flammability analysis, design to		
prevent fires and explosions, Fire and explosion indices, Phenomena of		
vapour cloud explosion, flash fires and BLEVE, Risk assessment		
methods. Safety audit and Emergency planning		
Unit 4: Process Plant Safety	15.5%	07
Role of safety in engineering, chemical hazards and worker safety,		
hazardous properties of chemicals. Safety aspects in site selection, plant		
layout, installation, operation and maintenance of selected process		

equipment, relief system and flares and design of pressure vessels, storage, handling, and transportation of hazardous chemicals etc.		
Unit 5: Relief System & Case Studies	13.3%	06
Design of relief system (flare design and knockout drum design), Case		
studies regarding environment, health and safety. Case studies: Major		
disasters		

Instructional Method and Pedagogy: Chalk-Board, Presentation, videos, notes

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able:		
CO1: To learn about alarm management system implemented in industries.		Understand Apply
CO2: To do proper Hazard and operability studies.	Cognitive	Apply
CO3: To do proper fire & safety audits.		Apply
CO4: To learn to design relief valve and knockout drums.		Understand
CO5: To prepare case studies of major disasters		

Learning Re	sources
1.	Reference Books:
	1. Environmental Pollution Control Engineering By C. S. Rao
	2. Sanders, 'Chemical process safety' 3rd Ed, Elsevier, (2005).
	3. Environment Engineering by Metcalf and Eddy
	4. Alarm Management: A Comprehensive Guide, 2nd Ed., By Bill R. Hollifield
	and Eddie Habibi.
	5. HAZOP guide to best practice by Frank Crawley& Brian Tayler 3rd ed.,
	Elsevier.
2.	Textbook:
	1. Crowl and Louver 'Chemical Process applications:' 3rd Ed., Prentice Hall,
	(2011)
3	Journals & Periodicals:
4	Other Electronic Resources:

Evaluation Scheme	Total Marks
Theory: Mid semester Marks	20 marks
Theory: End Semester Marks	40 marks

Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open book	15 marks
	Article review	10 marks
	Total	40 Marks

	PSO1	PSO2	PSO3
CO1	3	1	0
CO2	3	2	1
CO3	3	2	1
CO4	3	2	1
CO5	3	1	1
Avg.	3	1.6	0.8

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	2	0	0	1	1	0	1
CO2	1	1	1	2	1	0	0	0	1	1	0	1
CO3	1	2	2	2	1	0	0	0	1	1	0	1
CO4	2	1	3	1	1	0	0	0	1	1	0	1
CO5	1	1	1	1	1	0	0	0	1	1	0	1
Avg.	1.2	1.2	1.6	1.4	1	0.4	0	0	1	1	0	1

	TRANSPORT PHENOMENA	VII
BTCH705		

	Teaching Scheme (Hours) Teaching Credit						
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	0	0	3	3	0	0	3

Course Pre-requisites	Fluid Flow Operations, Heat Transfer Operations and Mass		
	Transfer operations		
Course Category	Core		
Course focus	Employability		
Rationale			
Course Revision/	18/01/2022		
Approval Date:	21/03/2023		
Course Objectives	To enable the student to:		
(As per Blooms'	1: Develop an understanding of the conservation laws that govern		
Taxonomy)mass, momentum, and heat transfer.			
	2: Learn to derive and solve the ordinary and partial differential		
	equations that result from the application of the conservation laws		
	to specific systems.		
	3: Develop the ability to formulate and solve mathematical models		
	for physical situations.		
	4: To enable the students to understand and different		
	mathematical models applied to actual situations.		
	5. To enable the students to understand Mechanism of fluids in		
	motion under different conditions.		

Course Content (Theory)	Weightage	Contact
		nours
Unit 1: Introduction to Transport Phenomenon:	11%	5
Classification of Transport Processes, Conservation Laws, Vector and		
Tensor Calculus Concept of Viscosity, Newton's Law of Viscosity,		
Thermal conductivity and mechanism of energy transport, Equation of		
Molecular Mass Transport, Molecular Diffusion in Gases.		
Unit 2: Principles of Momentum Transport:	33%	15
Shell Momentum Balance, Application of Shell Momentum Balance		
(Unidirectional flow): Flow of Falling Film, Flow Through Circular Pipe,		
Flow Through annulus, Flow Over Moving Plate		
Unit 3: Principles of Heat Transport:	33%	15
Steady State Condition and Fourier's Law, Shell Energy Balance and		
temperature distributions in solids and laminar flow, Applications of Shell		
Energy Balance: Heat Conduction with Electrical Source, Heat Conduction		
with Chemical Heat Source, Introduction to Governing equations of Forced		
& Natural Convention Heat Transfer.		
Unit 4: Principles of Mass Transport:	22%	10

Equimolar Counter Diffusion, Diffusion of A through Non-Diffusing B,	
introduction of diffusion with homogeneous reaction & heterogeneous	
chemical reaction	

Instructional Method and Pedagogy: PowerPoint presentation, chalk-board

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students		
will be able to:		
CO1: Students would gain the knowledge of fundamental		Understand
connections between the conservation laws in heat, mass,		
and momentum in terms of vector and tensor fluxes.	Cognitive	Understand
CO2: The students would be able to understand the		
mechanism of fluids in motion under different conditions		Apply
CO3: Recognize and apply analogies among momentum,		Apply
heat and mass transfer.		
CO4: Apply information obtained from solutions of the		Understand
balance equations to obtain Engineering quantities of		
interest.		
CO5: To understand Mechanism of fluids in motion under		
different conditions		

Learning Re	sources
1.	Reference Books:
	2. Christie John Geankoplis, "Transport Processes and Separation Process
	Principles", 4th Edition, PHI Learning Private Limited., New Delhi
	3. Incropera, "Fundamentals of Heat and Mass Transfer", 6th Edition, John
	Wiley & Sons (Asia) pvt. Ltd.
	4. W.J.Thomson, "Introduction to Transport Phenomena", Pearson Education
	Asia, NL.S.Sissom, and D.R.Pitts, "Elements of Transport Phenomena",
	McGrawHill, New York, 1972.
	5. R.W.Fahien, "Elementary Transport Phenomena", McGraw-Hill, New York,
	1983.
	6. J.R. Welty, R.W. Wilson, and C.W.Wicks, Rorer G.E, Wilson R.W.
	"Fundamentals of Momentum Heat and Mass Transfer", V Edn. John Wiley,
	New York, 2007.
2.	Textbook:
	1. R. Byron Bird, "Transprt Phenomena", 2nd Edition, John Wiley & Sons
	(Asia) pvt. Ltd.
3	Journals & Periodicals:
	1. International Journal of Transport Phenomena
4	Other Electronic Resources:

Evaluation Scheme	Total Marks	
Theory: Mid semester	20 marks	
Marks		
Theory: End Semester	40 marks	
Marks		
Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open book	15 marks
	Article review	10 marks
	Total	40 Marks
		I

	PSO1	PSO2	PSO3
CO1	2	2	1
CO2	2	3	0
CO3	2	3	0
CO4	2	3	0
CO5	2	2	0
Avg.	2	2	1

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	2	2	2	1	1	1	0	1
CO2	1	2	3	3	2	1	1	1	2	0	0	2
CO3	3	2	3	3	3	2	1	1	2	0	0	2
CO4	3	2	3	3	2	1	2	1	1	0	0	2
CO5	2	3	1	2	1	1	1	1	1	1	0	2
Avg.	2	1	2	1	2	2	2	1	1	1	0	1

BTCH706A	PETROLEUM REFINING PROCESSES	VII

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial Tota			Total Credit
3	0	0	3	3	0	0	3

Course Pre-requisites	Mass Transfer Operations, Process Technology
Course Category	Professional Elective
Course focus	Employability
Rationale	
Course Revision/	18/01/2022
Approval Date:	
Course Objectives	To enable the student to:
(As per Blooms'	1: Learn about processes associated with cracking of petroleum.
Taxonomy)	2: Understand the need of catalysts in various processes while
	going for cracking of petroleum.
	3: Learn about the important process parameters for refining
	processes.

Course Content (Theory)	Weightage	Contact hours
Unit 1:	17.7%	8
Thermal Cracking: Introduction to thermal cracking, importance of		
thermal cracking processes, early processes used for thermal cracking.		
Commercial processes: Visbreaking process, coking process, Processes for		
heavy feedstock etc.		
Unit 2:	22.2%	10
Cracking: Introduction to catalytic cracking, importance of catalytic		
cracking processes, early processes used for catalytic cracking. Difference		
between thermal cracking and catalytic cracking.		
Commercial processes: Fixed bed process, fluid bed process (FCC), moving		
bed process and processes for heavy feedstock. Catalysts used for catalytic		
processes, important process parameters for catalytic cracking.		
Unit 3: Catalysts, Deasphalting and Dewaxing processes:	20%	9
Introduction to deasphalting and dewaxing process, Importance of the		
deasphalting and dewaxing process. Deasphalting process, process		
options for heavy feedstocks, Dewaxing process.		
Unit 4: Hydrotreating and Desulphurization:	22.2%	10

Introduction to hydrotreating and desulphurization, importance of hydrotreatment and desulphurization process, commercial processes, catalyst used for hydrotreatment and desuphurization, processes for heavy feedstocks for hydrotreatment and desuphurization. Gasoline and Diesel Fuel Polishing.		
Unit 5: Environmental Aspects of Refining: Environmental rules and Regulations. Refinery Wastes: Types of refinery wastes, their processing techniques.	17.7%	8
Environmental Analysis.		

Instructional Method and Pedagogy: PowerPoint presentation

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to: CO1: Understand the cracking process in refineries. CO2: Understand the application and selection of catalyst in catalytic cracking processes. CO3: Analyse the process selection for a particular operation as well as parameters for the same.	Cognitive	Understand Understand Apply

Learning Re	sources
1.	Reference Books:
	1. James Speight, "The Chemistry and technology of petroleum", 2 nd Edition,
	Marcel Dekker,(1991).
	2. W.L.Nelson, Petroleum Refinery Engineering, McGrawHill, Newyork,
	(1958).
	3. R.A. Meyers, `Handbook of Petroleum refining processes', 3 rd Edition,
	McGraw Hill, (2004).
2.	Textbook:
	1. B.K.Bhaskar Rao, "Modern Petroleum Refining Processes", Oxford and
	IBH,(2007).
3	Journals & Periodicals:
4	Other Electronic Resources

Evaluation Scheme	Total Marks
Theory: Mid semester Marks	20 marks
Theory: End Semester Marks	40 marks

Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open book	15 marks
	Article review	10 marks
	Total	40 Marks

	PSO1	PSO2	PSO3
CO1	1	2	1
CO2	1	2	0
CO3	1	2	0
Avg.	1	2	0.33

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	2	0	2	1	1	1	0	1	2
CO2	1	1	2	2	1	2	2	1	2	0	0	1
CO3	1	1	2	1	1	2	1	1	1	0	2	1
Avg.	1	1	1.66	1.66	0.66	2	1.33	0.22	1.33	0	1	1.33

BTCH706B	POLYMER PROCESSING	VII

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	0	0	3	3	0	0	3

Course Pre-requisites	Basic knowledge of Polymer and its associated properties
Course Category	Professional Elective
Course focus	Employability
Rationale	
Course Revision/	18/01/2022
Approval Date:	
Course Objectives	To enable the student to:
(As per Blooms'	1: Learn the fundamentals of chemical engineering aspects of
Taxonomy)	polymeric materials.
	2: Study the aspects of processing, testing and applications.
	3: Equip students with basic knowledge of polymer synthesis that
	will help them to develop new materials.
	4. To study of various types of mould and understand their
	construction and working.
	5. Develop the capacity to make informed, scientific decisions
	involving materials selection and processing

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Basic aspects of Polymers	20%	9
Functionality, types, structure-property relationship, processing		
fundamentals, processing aids and additives and their purpose (e.g.		
antioxidants, plasticizers, antistatic agents, blowing agents etc.),		
Morphology, Rheology and flow of polymers.		
Unit 2: Chemical Engineering aspects of Polymer Processing	6.6%	3
Heat and mass transfer in polymer systems, mixing of polymers, mixing		
equipment.		
Unit 3: Polymer Processing Techniques	40%	18
Extrusion of polymers: Extrusion equipment, calendaring-equipment,		
manufacturing and analysis		
Thermoforming: Types, various techniques-equipment, manufacturing and analysis		

Moulding of polymers: Blow moulding, compression moulding, transfer		
moulding, rotational moulding, and injection moulding techniques, insert		
mouldingequipment, manufacturing and analysis		
Unit 4: Other processing techniques	6.6%	3
Sheet forming, fibre spinning, pultrusion, techniques and Equipment.		
Unit 5: Polymer Properties and determination	26.6%	12
Mechanical Properties: Different types of Impact tests: Determination of		
impact tests for different polymeric materials.Study of creep, relaxation,		
set and fatigue		
Electrical Properties: Their importance and significance, effect of		
temperature and humidity on electric properties.		
Thermal Properties: Determination of melting point and softening point		
for different polymers		
Environmental Resistance Properties: Effect of liquids and chemicals.		
Study of weathering resistance. Study of weathering property. Study of		
fire resistance.		

Instructional Method and Pedagogy: Industrial visits, activities, animated presentations/videos

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to: CO1: Understand the need of additives and flow properties of polymer during processing CO2: Apply knowledge of additives and formulation for producing different products CO3: Analyse polymer using various characterization techniques. CO4: Understand the various processing techniques of polymers to produce different products CO5: Analyse the process specific equipment, various dies, their working and designing aspects.	Cognitive	Understand Apply Analyse Understand Evaluate

Learning Re	sources
1.	Reference Books:
	1. Vasant R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar "Polymer
	Science", New age international, New Age International Pvt. Ltd Publishers, (2015).
	2. George Odian, "Principle of polymerization", 4th Edition, Wiley Blackwell Publication (2004).
	3. Principle of Polymer Processing, R.T. Fenner, Maxwell McMillan International Edn, London.

	4. Middleman S, Fundamentals of Polymer Processing, McGraw-Hill					
	Engineering with Polymers - Powell, (1977).					
2.	Textbook:					
	1. Premamoy Ghosh, "Polymer science and Technology: Plastic, rubbers,					
	blends and composites, 3rd Edition, Mc Graw Hill Education, India,					
	(2011).					
	2. Polymer Processing, Morton & Jones, Chapman & Hall.					
	3. Fundamentals of Polymer Processing, S. Middleman, HoughtonMifflin					
	Company, 1997.					
3	Journals & Periodicals:					
	1. International Polymer Processing, Progress in Polymer Science, Polymer					
	Degradation and Stability					
4	Other Electronic Resources:					
	1. NPTEL					

Evaluation Scheme	Total Marks	
Theory: Mid semester	20 marks	
Marks		
Theory: End Semester	40 marks	
Marks		
Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open book	15 marks
	Article review	10 marks
	Total	40 Marks

	PSO1	PSO2	PSO3
CO1	3	2	2
CO2	2	3	2
CO3	2	2	1
CO4	3	1	3
CO5	1	3	0
Avg.	2.2	2.2	1.6

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

Chemical Engineering Course Curriculum Academic Year 2023-24

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	0	0	1	1	1	2	1	0	1
CO2	2	1	2	0	1	1	0	1	2	1	0	1
CO3	2	1	2	3	2	1	0	0	2	1	0	1
CO4	3	3	1	2	3	3	0	1	1	1	0	1
CO5	1	3	3	1	3	0	1	0	2	1	0	1
Avg.	2	1.8	1.8	1.2	1.8	1.2	0.4	0.6	1.8	1	0	1

COURSE CODE BTCH706C	COURSE NAME BIOPROCESS ENCINEEPINC	SEMESTER VII
	ENGINEENING	

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	0	0	3	3	0	0	3

Course Pre-requisites	Basic knowledge of bio chemistry
Course Category	Professional Elective
Course focus	Employability
Rationale	
Course Revision/	
Approval Date:	
Course Objectives	
(As per Blooms' Taxonomy)	

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Introduction to Bio process Basic microbiology:	20%	6
Cell growth, factors affecting cell growth, metabolism, cell growth models,		
kinetics of thermal death of cells & spores. Design of Fermentation Media,		
batch and continuous culture, multistage culture.		
Unit 2: Kinetics Enzyme Kinetics:	20%	9
Principles of catalysis, introduction to enzyme kinetics, enzyme inhibition,		
stability, mass transfer in immobilized enzyme		
Fundamental of genetics and recombinant DNA technology: site		
directed mutagenesis		
Unit 3:Sterilization	20%	9
Sterilization: concept and methods. Type of Sterilizations, Batch heat		
sterilization of liquids, Estimation of sterilizer efficiency, Continuous heat		
sterilization of liquids, Sterilization of air: Methods & Mechanism and filter		
design. Radiation and chemical sterilization. Problems on calculation of		
sterilization time		
Unit 4: Bioreactors	20%	15
Introduction to Fermenter Design Types of bioreactors. Ideal Reactor		
Operation: Batch, Fed Batch & Continuous operation of mixed bioreactors,		

Chemostate with immobilized cells, Chemostate with cell recycle, substrate utilization and product formation in bioreactor. Solid state Fermentations and it's applications. Mass Transfer in Bioreactors, Role of diffusion, Convective mass transfer, Gas-liquid mass transfer, Oxygen uptake in cell cultures, Factor affecting cellular oxygen demand, Oxygen transfer in bioreactors, Measurement of volumetric oxygen transfer coefficient, Oxygen transfer in large bioreactor. Introduction to bioreactor control mechanism and basic concepts of computer modeling and optimization in bio-process		
Unit 5: Downstream Processing	20%	6
Filtration, ultrafiltration, precipitation of proteins, chromatography,		
electrophoresis and crystallization.		
Instructional Method and Pedagogy: Chalk-board, Power point presentation	on	

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1:		
CO2:	Cognitive	
CO3:		
CO4:		
CO5:		

Learning Re	esources
1.	Reference Books:
	1. Biochemical Engineering- S. Aiba , A.E. Humphray, University of Tokyo Press
	2. Bioprocess Engineering Principles – P. M. Doran, 5th ed
	3. Bioprocess Engineering: Basic Concepts by Shular & Kargi
	4. Hand Book Of Bioengineering- Skalak R & Shu Chien, 4th ed.
2.	Journals & Periodicals:
3.	Other Electronic Resources:

NPTEL

Evaluation Scheme	Total Marks	
Theory: Mid semester	20 marks	
Marks		
Theory: End Semester	40 marks	
Marks		
Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open Book Assignment	15 marks
	Open Book Assignment	10 marks
	Total	40 Marks

	PSO1	PSO2	PSO3
CO1			
CO2			
CO3			
CO4			
CO5			
Avg.			

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												

Chemical Engineering Course Curriculum Academic Year 2023-24

CO5						
Avg.						

COURSE CODE	COURSE NAME	SEMESTER
BTCH706E	PROCESS	VII
	INTENSIFICATION	

Teaching Scheme (Hours)				Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
3	0	0	3	3	0	0	3

Course Pre-requisites	Knowledge of chemical engineering operations & processes.
Course Category	Professional Elective
Course focus	Employability
Rationale	
Course Revision/ Approval Date:	
Course Objectives	
(As per Blooms' Taxonomy)	

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Introduction to Process Intensificatio	20%	8
Definition of PI, History; Principles of PI, Objectives of PI in detail,		
Techniques of PI applications, Sustainability in process industry		
Unit 2: Process intensification of different Processes	20%	10
Fluid Flow Processes, Heat & mass transfer processes, Mixing, Separation,		
Reactor Design, Thermodynamic Processes, Mechanical Operations Etc.		
Unit 3: Pinch Technology	20%	9
Pinch Technology		
Unit 4: Network system	20%	10
Heat Exchanger Network Synthesis, Mass Exchange Network Synthesis.		
Unit 5: Case studies	20%	8
Case studies based on Microreactors, Microfabrication, Scale-up mixing,		
Compact heat exchangers, Sonocrystallization, Transformation Batch/semi-		
batch continuous process etc		

Instructional Method and Pedagogy: Chalk-board, Power point presentation

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1:		
CO2:	Cognitive	
CO3:	Cognitive	
CO4:		
CO5:		

Learning Re	sources
1.	Reference Books: 1. Reay D., Ramshaw C., Harvey A., Process Intensification, Butter worth Heinemann, 2008.
	2. Innovations for process intensification in the process industry by S.V. Shivakumar, N.Kaistha, D.P.Rao., IIT Kanpur.
2.	Journals & Periodicals:
3.	Other Electronic Resources: NPTEL

Evaluation Scheme	Total Marks
Theory: Mid semester Marks	20 marks
Theory: End Semester Marks	40 marks

Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Open Book Assignment	15 marks
	Open Book Assignment	10 marks
	Total	40 Marks

	PSO1	PSO2	PSO3
CO1			
CO2			
CO3			
CO4			
CO5			
Avg.			

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												
Avg.												

BTCH706F	INDUSTRIAL MANAGEMENT	VII
	PRACTICES	

Teaching Scheme (Hours)				Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial		Total Credit	
3	0	0	3	3	0	0	3

Course Pre-requisites	Industrial Management Fundamentals
Course Category	Professional Elective
Course focus	Employability
Rationale	
Course Revision/	18/01/2022
Approval Date:	21/03/2023
Course Objectives	To enable the student:
(As per Blooms'	1. 1:To understand concepts of Materials Management and
Taxonomy)	Resource Optimization
	2. To understand basics of quality management principles and
	tools adopted
	3. To learn different aspects of Business laws.
	4. To understand Industrial Relations Conflicts & Resolutions
	Process
	5. To understand concepts of Lean Management.

Course Content (Theory)	Weightage	Contact
		hours
Unit 1: Materials Management	26.6%	12
Materials Management, Inventory control, ABC analysis, EOQ, Resource		
Optimization, Logistics, Logistics relationships.		
Unit 2: Quality Management and Tools	22.2%	10
Six Sigma, Six Sigma Methodology And Tools Elements of TQM, Tools of		
TQM, Total Quality Management and Analytical Tools.		
Unit 3: Business Laws	17.7%	8
Business Legal aspects, Types of firms, Types of Business Law.		
Unit 4: Industrial Relations	15.5%	7
Industrial Relations, Employer Rights, Misconduct, Harassment &		
Discrimination, Industrial Conflicts & Resolutions Process and Case studies		
Unit 5: Lean Management, Industrial Practices.	17.7%	8
Lean Thinking, Mudi, Mura, 7 Wastes, Concepts and Tools of LEAN,		
Industrial Practices, Brand Value		

Instructional Method and Pedagogy: PowerPoint presentation, videos, chalk-board

Course Objectives:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students		
will be able:		
CO1: To develop the skills in understanding the Intra-		Understand
functional linkage of respective Units concepts and		
activities.		Aanalyse
CO2: To understand the importance of critical data and its	Cognitive	Apply
analysis, used in each Unit		
CO3: To gain an overview and understanding of the		Evaluate
theories and principles of modern management		
CO4: To enhance their skills to achieve the desired goal in		Create
a more efficient and effective way with use facts/data		
CO5: To make an appreciation of these principles in relation		
to their own experiences and selected case studies		

Learning Re	esources
1.	Reference Books:
	1. Management: Principles and Practice by S K Mandal.
2.	Textbook:
	1. The Lean Six Sigma Pocket Toolbook: by Michael L. George, John Maxey,
	David Rowlands, Mark Price
	2. Principles of management by Gupta and Meenakshi, Project Management by
	Dr. Sapna Bansal
	3. Operations Research: An Introduction Book by Hamdy A. Taha.
3	Journals & Periodicals:
4	Other Electronic Resources:

Evaluation Scheme	Total Marks	
Theory: Mid semester	20 marks	
Marks		
Theory: End Semester	40 marks	
Marks		
Theory: Continuous	Attendance	05 marks
Marks	MCQs	10 marks
	Open book	15 marks
	Article review	10 marks
	Total	40 Marks

	PSO1	PSO2	PSO3
CO1	0	0	2
CO2	0	0	3
CO3	0	0	1
CO4	0	0	2
CO5	0	0	2
Avg.			

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	0	0	1	0	0	3	1	3	3	1	3	3
CO2	2	2	0	1	1	1	0	3	1	2	2	2
CO3	1	1	0	1	1	1	0	2	2	1	1	1
CO4	2	1	1	1	0	0	0	1	2	1	2	3
CO5	1	1	1	1	1	2	0	1	2	1	3	3
Avg.												

COURSE CODE	COURSE NAME	SEMESTER
BTCH801	PROJECT	VIII

Teaching Scheme (Hours)				Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutori		Tutorial	Total Credit
0	20	0	20	0	20	0	10

Course Pre-requisites	All courses studied till 7 th semester
Course Category	Project
Course focus	
Rationale	
Course Revision/	
Approval Date:	
Course Objectives	To enable the student to:
(As per Blooms' Taxonomy)	1: Integrate all the subjects that they have learnt and design plants/processes.
	2: Gather scientific information on a particular topic, analyse the information from scientific principles, and present a written and oral summary on the topic.
	3: Develop the ability to identify clear and achievable objectives and plan the project to achieve them.
	4: Make students understand how to work in the group, achieve targets as a team under the mentor-ship of faculty members.
	5: Develop writing and presentation skills among students and to be able to contribute with their work in the field of chemical engineering.

Course Outcome:*	Blooms' Taxonomy Domain*	Blooms' Taxonomy Sub Domain*
After successful completion of the above course, students will be able to:		
CO1: Identify clear and achievable objectives and plan the project to achieve them.	Understand	List
CO2: Demonstrate the ability to pick the right methodology for the project and should be able to justify it.	Apply	Apply
CO3: Demonstrate the personal abilities and skills required to produce and present an extended piece of work.	Apply	Apply
CO4: Demonstrate the ability for analysis of the process and outcome.	Apply	Apply
CO5: Show initiative, enthusiasm and commitment to the task.	Apply	Apply

Evaluation Scheme				
PARTICLUARS	MARKS DISTRIBUTION	COMMITTEE		
First Review: Problem identification, objective, motivation, scope, work plan.	15%	Internal		
Second Review: Methodology, procedure, primary design, primary calculation.	15%	Internal		
Third Review: Detailed design, detailed calculation.	15%	Internal		
Project Report	15%	Internal		
Final Presentation	25%	External		
Continuous Evaluation	15%	Internal		